A key selection algorithm is similar to a key derivation algorithm in
that it takes a secret input and produces a secret output stream.
However, unlike key derivation algorithms, there is no expectation
that the input cannot be reconstructed from the output. Key selection
algorithms are exclusively meant to be used on the output of a key
agreement algorithm to select chunks of the shared secret.
`test_hkdf` in the hkdf test suites consumed stack of ~6KB with
6 buffers of ~1KB each. This causes stack overflow on some platforms
with smaller stack. The buffer sizes were reduced. By testing, the sizes
can be reduced even further, as the largest seen size is 82 bytes(for okm).
On key import and key generation, for RSA, reject key sizes that are
not a multiple of 8. Such keys are not well-supported in Mbed TLS and
are hardly ever used in practice.
The previous commit removed support for non-byte-aligned keys at the
PSA level. This commit actively rejects such keys and adds
corresponding tests (test keys generated with "openssl genrsa").
We had only allocated 40 bytes for printing into, but we wanted to print 46
bytes. Update the buffer to be 47 bytes, which is large enough to hold what
we want to print plus a terminating null byte.
Simplify the test case "PSA export a slot after a failed import of an
EC keypair": use an invalid private value for the specified curve. Now
the dependencies match the test data, so this fixes curves.pl.
Update some test data from the asymmetric_apis_coverage branch that
wasn't updated to the new format from the
psa-asymmetric-format-raw_private_key branch.
1. New test for testing bad order of hash function calls.
2. Removed test hash_update_bad_paths since it's test scenario
was moved to the new test.
3. Moved some scenarios from test hash_verify_bad_paths to
the new test.
1. Rename hash_bad_paths to hash_verify_bad_paths
2. Add test hash_update_bad_paths
3. Add test hash_finish_bad_paths
The different scenarios tested as part of hash_bad_paths are
moved to the relevant test.
The invocation of `compat.sh` that runs those tests was added in all.sh but
not here, resulting in our reported coverage figures being slightly lower than
what we actually test. Fixing that omission change the figures reported from:
Lines Tested : 19105 of 22623 84.4%
Functions Tested : 1392 of 1460 95.3%
to:
Lines Tested : 19126 of 22623 84.5%
Functions Tested : 1399 of 1460 95.8%
It requires `$OPENSSL_NEXT` to be set and point to an OpenSSL version in the
1.1.1 line or later.
This commit introduces variants test-ca_utf8.crt,
test-ca_printablestring.crt and test-ca_uppercase.crt
of tests/data_files/test-ca.crt which differ from
test-ca.crt in their choice of string encoding and
upper and lower case letters in the DN field. These
changes should be immaterial to the recovation check,
and three tests are added that crl.pem, which applies
to test-ca.crt, is also considered as applying to
test-ca_*.crt.
The test files were generated using PR #1641 which
- adds a build instruction for test-ca.crt to
tests/data_files/Makefile which allows easy
change of the subject DN.
- changes the default string format from `PrintableString`
to `UTF8String`.
Specifically:
- `test-ca_utf8.crt` was generated by running
`rm test-ca.crt && make test-ca.crt`
on PR #1641.
- `test-ca_uppercase.crt`, too, was generated by running
`rm test-ca.crt && make test-ca.crt`
on PR #1641, after modifying the subject DN line in the build
instruction for `test-ca.crt` in `tests/data_files/Makefile`.
- `test-ca_printable.crt` is a copy of `test-ca.crt`
because at the time of this commit, `PrintableString` is
still the default string format.
Enable passing a number to "-v" in order to set the level of verbosity.
Print detailed test failure information at verbosity level 1 or higher.
Display summary messages at the verbosity level 2 or higher. Print
detailed test information at verbosity level 3 or higher, whether the
test failed or not. This enables a more readable output style that
includes detailed failure information when a failure occurs.