/* FreeRTOS.org V4.7.1 - Copyright (C) 2003-2008 Richard Barry. This file is part of the FreeRTOS.org distribution. FreeRTOS.org is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. FreeRTOS.org is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with FreeRTOS.org; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA A special exception to the GPL can be applied should you wish to distribute a combined work that includes FreeRTOS.org, without being obliged to provide the source code for any proprietary components. See the licensing section of http://www.FreeRTOS.org for full details of how and when the exception can be applied. *************************************************************************** Please ensure to read the configuration and relevant port sections of the online documentation. +++ http://www.FreeRTOS.org +++ Documentation, latest information, license and contact details. +++ http://www.SafeRTOS.com +++ A version that is certified for use in safety critical systems. +++ http://www.OpenRTOS.com +++ Commercial support, development, porting, licensing and training services. *************************************************************************** */ #ifndef SEMAPHORE_H #define SEMAPHORE_H #include "queue.h" typedef xQueueHandle xSemaphoreHandle; #define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( unsigned portCHAR ) 1 ) #define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( unsigned portCHAR ) 0 ) #define semGIVE_BLOCK_TIME ( ( portTickType ) 0 ) /** * semphr. h *
vSemaphoreCreateBinary( xSemaphoreHandle xSemaphore )* * Macro that implements a semaphore by using the existing queue mechanism. * The queue length is 1 as this is a binary semaphore. The data size is 0 * as we don't want to actually store any data - we just want to know if the * queue is empty or full. * * This type of semaphore can be used for pure synchronisation between tasks or * between an interrupt and a task. The semaphore need not be given back once * obtained, so one task/interrupt can continuously 'give' the semaphore while * another continuously 'takes' the semaphore. For this reason this type of * semaphore does not use a priority inheritance mechanism. For an alternative * that does use priority inheritance see xSemaphoreCreateMutex(). * * @param xSemaphore Handle to the created semaphore. Should be of type xSemaphoreHandle. * * Example usage:
xSemaphoreHandle xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
// This is a macro so pass the variable in directly.
vSemaphoreCreateBinary( xSemaphore );
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
* \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
* \ingroup Semaphores
*/
#define vSemaphoreCreateBinary( xSemaphore ) { \
xSemaphore = xQueueCreate( ( unsigned portBASE_TYPE ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH ); \
if( xSemaphore != NULL ) \
{ \
xSemaphoreGive( xSemaphore ); \
} \
}
/**
* semphr. h
* xSemaphoreTake(
* xSemaphoreHandle xSemaphore,
* portTickType xBlockTime
* )
*
* Macro to obtain a semaphore. The semaphore must have previously been
* created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting().
*
* @param xSemaphore A handle to the semaphore being taken - obtained when
* the semaphore was created.
*
* @param xBlockTime The time in ticks to wait for the semaphore to become
* available. The macro portTICK_RATE_MS can be used to convert this to a
* real time. A block time of zero can be used to poll the semaphore. A block
* time of portMAX_DELAY can be used to block indefinitely (provided
* INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).
*
* @return pdTRUE if the semaphore was obtained. pdFALSE
* if xBlockTime expired without the semaphore becoming available.
*
* Example usage:
xSemaphoreHandle xSemaphore = NULL;
// A task that creates a semaphore.
void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
vSemaphoreCreateBinary( xSemaphore );
}
// A task that uses the semaphore.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xSemaphore != NULL )
{
// See if we can obtain the semaphore. If the semaphore is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTake( xSemaphore, ( portTickType ) 10 ) == pdTRUE )
{
// We were able to obtain the semaphore and can now access the
// shared resource.
// ...
// We have finished accessing the shared resource. Release the
// semaphore.
xSemaphoreGive( xSemaphore );
}
else
{
// We could not obtain the semaphore and can therefore not access
// the shared resource safely.
}
}
}
* \defgroup xSemaphoreTake xSemaphoreTake
* \ingroup Semaphores
*/
#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( xQueueHandle ) xSemaphore, NULL, xBlockTime, pdFALSE )
/**
* semphr. h
* xSemaphoreTakeRecursive(
* xSemaphoreHandle xMutex,
* portTickType xBlockTime
* )
*
* Macro to recursively obtain, or 'take', a mutex type semaphore.
* The mutex must have previously been created using a call to
* xSemaphoreCreateRecursiveMutex();
*
* configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
* macro to be available.
*
* This macro must not be used on mutexes created using xSemaphoreCreateMutex().
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* @param xMutex A handle to the mutex being obtained. This is the
* handle returned by xSemaphoreCreateRecursiveMutex();
*
* @param xBlockTime The time in ticks to wait for the semaphore to become
* available. The macro portTICK_RATE_MS can be used to convert this to a
* real time. A block time of zero can be used to poll the semaphore. If
* the task already owns the semaphore then xSemaphoreTakeRecursive() will
* return immediately no matter what the value of xBlockTime.
*
* @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime
* expired without the semaphore becoming available.
*
* Example usage:
xSemaphoreHandle xMutex = NULL;
// A task that creates a mutex.
void vATask( void * pvParameters )
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}
// A task that uses the mutex.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xMutex != NULL )
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTakeRecursive( xSemaphore, ( portTickType ) 10 ) == pdTRUE )
{
// We were able to obtain the mutex and can now access the
// shared resource.
// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );
xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );
// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, but instead buried in a more complex
// call structure. This is just for illustrative purposes.
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
// Now the mutex can be taken by other tasks.
}
else
{
// We could not obtain the mutex and can therefore not access
// the shared resource safely.
}
}
}
* \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
* \ingroup Semaphores
*/
#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( xMutex, xBlockTime )
/*
* xSemaphoreAltTake() is an alternative version of xSemaphoreTake().
*
* The source code that implements the alternative (Alt) API is much
* simpler because it executes everything from within a critical section.
* This is the approach taken by many other RTOSes, but FreeRTOS.org has the
* preferred fully featured API too. The fully featured API has more
* complex code that takes longer to execute, but makes much less use of
* critical sections. Therefore the alternative API sacrifices interrupt
* responsiveness to gain execution speed, whereas the fully featured API
* sacrifices execution speed to ensure better interrupt responsiveness.
*/
#define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( xQueueHandle ) xSemaphore, NULL, xBlockTime, pdFALSE )
/**
* semphr. h
* xSemaphoreGive( xSemaphoreHandle xSemaphore )* * Macro to release a semaphore. The semaphore must have previously been * created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake(). * * This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for * an alternative which can be used from an ISR. * * This macro must also not be used on semaphores created using * xSemaphoreCreateRecursiveMutex(). * * @param xSemaphore A handle to the semaphore being released. This is the * handle returned when the semaphore was created. * * @return pdTRUE if the semaphore was released. pdFALSE if an error occurred. * Semaphores are implemented using queues. An error can occur if there is * no space on the queue to post a message - indicating that the * semaphore was not first obtained correctly. * * Example usage:
xSemaphoreHandle xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
vSemaphoreCreateBinary( xSemaphore );
if( xSemaphore != NULL )
{
if( xSemaphoreGive( xSemaphore ) != pdTRUE )
{
// We would expect this call to fail because we cannot give
// a semaphore without first "taking" it!
}
// Obtain the semaphore - don't block if the semaphore is not
// immediately available.
if( xSemaphoreTake( xSemaphore, ( portTickType ) 0 ) )
{
// We now have the semaphore and can access the shared resource.
// ...
// We have finished accessing the shared resource so can free the
// semaphore.
if( xSemaphoreGive( xSemaphore ) != pdTRUE )
{
// We would not expect this call to fail because we must have
// obtained the semaphore to get here.
}
}
}
}
* \defgroup xSemaphoreGive xSemaphoreGive
* \ingroup Semaphores
*/
#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( xQueueHandle ) xSemaphore, NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
* xSemaphoreGiveRecursive( xSemaphoreHandle xMutex )* * Macro to recursively release, or 'give', a mutex type semaphore. * The mutex must have previously been created using a call to * xSemaphoreCreateRecursiveMutex(); * * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this * macro to be available. * * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). * * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex * doesn't become available again until the owner has called * xSemaphoreGiveRecursive() for each successful 'take' request. For example, * if a task successfully 'takes' the same mutex 5 times then the mutex will * not be available to any other task until it has also 'given' the mutex back * exactly five times. * * @param xMutex A handle to the mutex being released, or 'given'. This is the * handle returned by xSemaphoreCreateMutex(); * * @return pdTRUE if the semaphore was given. * * Example usage:
xSemaphoreHandle xMutex = NULL;
// A task that creates a mutex.
void vATask( void * pvParameters )
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}
// A task that uses the mutex.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xMutex != NULL )
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 ) == pdTRUE )
{
// We were able to obtain the mutex and can now access the
// shared resource.
// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );
xSemaphoreTakeRecursive( xMutex, ( portTickType ) 10 );
// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, it would be more likely that the calls
// to xSemaphoreGiveRecursive() would be called as a call stack
// unwound. This is just for demonstrative purposes.
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
// Now the mutex can be taken by other tasks.
}
else
{
// We could not obtain the mutex and can therefore not access
// the shared resource safely.
}
}
}
* \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
* \ingroup Semaphores
*/
#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( xMutex )
/*
* xSemaphoreAltGive() is an alternative version of xSemaphoreGive().
*
* The source code that implements the alternative (Alt) API is much
* simpler because it executes everything from within a critical section.
* This is the approach taken by many other RTOSes, but FreeRTOS.org has the
* preferred fully featured API too. The fully featured API has more
* complex code that takes longer to execute, but makes much less use of
* critical sections. Therefore the alternative API sacrifices interrupt
* responsiveness to gain execution speed, whereas the fully featured API
* sacrifices execution speed to ensure better interrupt responsiveness.
*/
#define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( xQueueHandle ) xSemaphore, NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
*
xSemaphoreGiveFromISR(
xSemaphoreHandle xSemaphore,
portSHORT sTaskPreviouslyWoken
)
*
* Macro to release a semaphore. The semaphore must have previously been
* created with a call to vSemaphoreCreateBinary() or xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
* must not be used with this macro.
*
* This macro can be used from an ISR.
*
* @param xSemaphore A handle to the semaphore being released. This is the
* handle returned when the semaphore was created.
*
* @param sTaskPreviouslyWoken This is included so an ISR can make multiple calls
* to xSemaphoreGiveFromISR () from a single interrupt. The first call
* should always pass in pdFALSE. Subsequent calls should pass in
* the value returned from the previous call. See the file serial .c in the
* PC port for a good example of using xSemaphoreGiveFromISR ().
*
* @return pdTRUE if a task was woken by releasing the semaphore. This is
* used by the ISR to determine if a context switch may be required following
* the ISR.
*
* Example usage:
#define LONG_TIME 0xffff
#define TICKS_TO_WAIT 10
xSemaphoreHandle xSemaphore = NULL;
// Repetitive task.
void vATask( void * pvParameters )
{
for( ;; )
{
// We want this task to run every 10 ticks of a timer. The semaphore
// was created before this task was started.
// Block waiting for the semaphore to become available.
if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
{
// It is time to execute.
// ...
// We have finished our task. Return to the top of the loop where
// we will block on the semaphore until it is time to execute
// again. Note when using the semaphore for synchronisation with an
// ISR in this manner there is no need to 'give' the semaphore back.
}
}
}
// Timer ISR
void vTimerISR( void * pvParameters )
{
static unsigned portCHAR ucLocalTickCount = 0;
static portBASE_TYPE xTaskWoken;
// A timer tick has occurred.
// ... Do other time functions.
// Is it time for vATask () to run?
xTaskWoken = pdFALSE;
ucLocalTickCount++;
if( ucLocalTickCount >= TICKS_TO_WAIT )
{
// Unblock the task by releasing the semaphore.
xTaskWoken = xSemaphoreGiveFromISR( xSemaphore, xTaskWoken );
// Reset the count so we release the semaphore again in 10 ticks time.
ucLocalTickCount = 0;
}
if( xTaskWoken != pdFALSE )
{
// We can force a context switch here. Context switching from an
// ISR uses port specific syntax. Check the demo task for your port
// to find the syntax required.
}
}
* \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
* \ingroup Semaphores
*/
#define xSemaphoreGiveFromISR( xSemaphore, xTaskPreviouslyWoken ) xQueueGenericSendFromISR( ( xQueueHandle ) xSemaphore, NULL, xTaskPreviouslyWoken, queueSEND_TO_BACK )
/**
* semphr. h
* xSemaphoreHandle xSemaphoreCreateMutex( void )* * Macro that implements a mutex semaphore by using the existing queue * mechanism. * * Mutexes created using this macro can be accessed using the xSemaphoreTake() * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and * xSemaphoreGiveRecursive() macros should not be used. * * This type of semaphore uses a priority inheritance mechanism so a task * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the * semaphore it is no longer required. * * Mutex type semaphores cannot be used from within interrupt service routines. * * See xSemaphoreCreateBinary() for an alternative implementation that can be * used for pure synchronisation (where one task or interrupt always 'gives' the * semaphore and another always 'takes' the semaphore) and from within interrupt * service routines. * * @return xSemaphore Handle to the created mutex semaphore. Should be of type * xSemaphoreHandle. * * Example usage:
xSemaphoreHandle xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateMutex();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
* \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
* \ingroup Semaphores
*/
#define xSemaphoreCreateMutex() xQueueCreateMutex()
/**
* semphr. h
* xSemaphoreHandle xSemaphoreCreateRecursiveMutex( void )* * Macro that implements a recursive mutex by using the existing queue * mechanism. * * Mutexes created using this macro can be accessed using the * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The * xSemaphoreTake() and xSemaphoreGive() macros should not be used. * * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex * doesn't become available again until the owner has called * xSemaphoreGiveRecursive() for each successful 'take' request. For example, * if a task successfully 'takes' the same mutex 5 times then the mutex will * not be available to any other task until it has also 'given' the mutex back * exactly five times. * * This type of semaphore uses a priority inheritance mechanism so a task * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the * semaphore it is no longer required. * * Mutex type semaphores cannot be used from within interrupt service routines. * * See xSemaphoreCreateBinary() for an alternative implementation that can be * used for pure synchronisation (where one task or interrupt always 'gives' the * semaphore and another always 'takes' the semaphore) and from within interrupt * service routines. * * @return xSemaphore Handle to the created mutex semaphore. Should be of type * xSemaphoreHandle. * * Example usage:
xSemaphoreHandle xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateRecursiveMutex();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
* \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
* \ingroup Semaphores
*/
#define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex()
/**
* semphr. h
* xSemaphoreHandle xSemaphoreCreateCounting( unsigned portBASE_TYPE uxMaxCount, unsigned portBASE_TYPE uxInitialCount )* * Macro that creates a counting semaphore by using the existing * queue mechanism. * * Counting semaphores are typically used for two things: * * 1) Counting events. * * In this usage scenario an event handler will 'give' a semaphore each time * an event occurs (incrementing the semaphore count value), and a handler * task will 'take' a semaphore each time it processes an event * (decrementing the semaphore count value). The count value is therefore * the difference between the number of events that have occurred and the * number that have been processed. In this case it is desirable for the * initial count value to be zero. * * 2) Resource management. * * In this usage scenario the count value indicates the number of resources * available. To obtain control of a resource a task must first obtain a * semaphore - decrementing the semaphore count value. When the count value * reaches zero there are no free resources. When a task finishes with the * resource it 'gives' the semaphore back - incrementing the semaphore count * value. In this case it is desirable for the initial count value to be * equal to the maximum count value, indicating that all resources are free. * * @param uxMaxCount The maximum count value that can be reached. When the * semaphore reaches this value it can no longer be 'given'. * * @param uxInitialCount The count value assigned to the semaphore when it is * created. * * @return Handle to the created semaphore. Null if the semaphore could not be * created. * * Example usage:
xSemaphoreHandle xSemaphore;
void vATask( void * pvParameters )
{
xSemaphoreHandle xSemaphore = NULL;
// Semaphore cannot be used before a call to xSemaphoreCreateCounting().
// The max value to which the semaphore can count should be 10, and the
// initial value assigned to the count should be 0.
xSemaphore = xSemaphoreCreateCounting( 10, 0 );
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
* \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
* \ingroup Semaphores
*/
#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( uxMaxCount, uxInitialCount )
#endif /* SEMAPHORE_H */