1
0
mirror of https://github.com/FreeRTOS/FreeRTOS-Plus-TCP synced 2025-10-21 23:30:39 +08:00
Files
FreeRTOS-Plus-TCP/source/FreeRTOS_IP.c
xuelix ab519329f4 Misra rule 11.3, 11.4 suppression and 4.6 fix (#512)
* Misra rule 11.3 inline suppression

* Added several MISRA deviations

* MISRA Rule 11.4 inline suppression

* Misra violation fix 4.6

* Misra rule 1.2 suppression
2022-07-12 14:20:52 -07:00

2152 lines
87 KiB
C

/*
* FreeRTOS+TCP <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* http://aws.amazon.com/freertos
* http://www.FreeRTOS.org
*/
/**
* @file FreeRTOS_IP.c
* @brief Implements the basic functionality for the FreeRTOS+TCP network stack.
*/
/* Standard includes. */
#include <stdint.h>
#include <stdio.h>
#include <string.h>
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* FreeRTOS+TCP includes. */
#include "FreeRTOS_IP.h"
#include "FreeRTOS_ICMP.h"
#include "FreeRTOS_IP_Timers.h"
#include "FreeRTOS_IP_Utils.h"
#include "FreeRTOS_Sockets.h"
#include "FreeRTOS_IP_Private.h"
#include "FreeRTOS_ARP.h"
#include "FreeRTOS_UDP_IP.h"
#include "FreeRTOS_DHCP.h"
#include "NetworkInterface.h"
#include "NetworkBufferManagement.h"
#include "FreeRTOS_DNS.h"
/* IPv4 multi-cast addresses range from 224.0.0.0.0 to 240.0.0.0. */
#define ipFIRST_MULTI_CAST_IPv4 0xE0000000U /**< Lower bound of the IPv4 multicast address. */
#define ipLAST_MULTI_CAST_IPv4 0xF0000000U /**< Higher bound of the IPv4 multicast address. */
/* The first byte in the IPv4 header combines the IP version (4) with
* with the length of the IP header. */
#define ipIPV4_VERSION_HEADER_LENGTH_MIN 0x45U /**< Minimum IPv4 header length. */
#define ipIPV4_VERSION_HEADER_LENGTH_MAX 0x4FU /**< Maximum IPv4 header length. */
/** @brief Maximum time to wait for an ARP resolution while holding a packet. */
#ifndef ipARP_RESOLUTION_MAX_DELAY
#define ipARP_RESOLUTION_MAX_DELAY ( pdMS_TO_TICKS( 2000U ) )
#endif
#ifndef iptraceIP_TASK_STARTING
#define iptraceIP_TASK_STARTING() do {} while( ipFALSE_BOOL ) /**< Empty definition in case iptraceIP_TASK_STARTING is not defined. */
#endif
#if ( ( ipconfigUSE_TCP == 1 ) && !defined( ipTCP_TIMER_PERIOD_MS ) )
/** @brief When initialising the TCP timer, give it an initial time-out of 1 second. */
#define ipTCP_TIMER_PERIOD_MS ( 1000U )
#endif
/** @brief Defines how often the ARP timer callback function is executed. The time is
* shorter in the Windows simulator as simulated time is not real time. */
#ifndef ipARP_TIMER_PERIOD_MS
#ifdef _WINDOWS_
#define ipARP_TIMER_PERIOD_MS ( 500U ) /* For windows simulator builds. */
#else
#define ipARP_TIMER_PERIOD_MS ( 10000U )
#endif
#endif
#if ( ipconfigUSE_TCP != 0 )
/** @brief Set to a non-zero value if one or more TCP message have been processed
* within the last round. */
BaseType_t xProcessedTCPMessage;
#endif
/** @brief If ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES is set to 1, then the Ethernet
* driver will filter incoming packets and only pass the stack those packets it
* considers need processing. In this case ipCONSIDER_FRAME_FOR_PROCESSING() can
* be #-defined away. If ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES is set to 0
* then the Ethernet driver will pass all received packets to the stack, and the
* stack must do the filtering itself. In this case ipCONSIDER_FRAME_FOR_PROCESSING
* needs to call eConsiderFrameForProcessing.
*/
#if ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES == 0
#define ipCONSIDER_FRAME_FOR_PROCESSING( pucEthernetBuffer ) eConsiderFrameForProcessing( ( pucEthernetBuffer ) )
#else
#define ipCONSIDER_FRAME_FOR_PROCESSING( pucEthernetBuffer ) eProcessBuffer
#endif
/*-----------------------------------------------------------*/
/** @brief The pointer to buffer with packet waiting for ARP resolution. */
NetworkBufferDescriptor_t * pxARPWaitingNetworkBuffer = NULL;
/*-----------------------------------------------------------*/
static void prvProcessIPEventsAndTimers( void );
/*
* The main TCP/IP stack processing task. This task receives commands/events
* from the network hardware drivers and tasks that are using sockets. It also
* maintains a set of protocol timers.
*/
static void prvIPTask( const void * pvParameters );
/*
* Called when new data is available from the network interface.
*/
static void prvProcessEthernetPacket( NetworkBufferDescriptor_t * const pxNetworkBuffer );
#if ( ipconfigPROCESS_CUSTOM_ETHERNET_FRAMES != 0 )
/*
* The stack will call this user hook for all Ethernet frames that it
* does not support, i.e. other than IPv4, IPv6 and ARP ( for the moment )
* If this hook returns eReleaseBuffer or eProcessBuffer, the stack will
* release and reuse the network buffer. If this hook returns
* eReturnEthernetFrame, that means user code has reused the network buffer
* to generate a response and the stack will send that response out.
* If this hook returns eFrameConsumed, the user code has ownership of the
* network buffer and has to release it when it's done.
*/
extern eFrameProcessingResult_t eApplicationProcessCustomFrameHook( NetworkBufferDescriptor_t * const pxNetworkBuffer );
#endif /* ( ipconfigPROCESS_CUSTOM_ETHERNET_FRAMES != 0 ) */
/*
* Process incoming IP packets.
*/
static eFrameProcessingResult_t prvProcessIPPacket( IPPacket_t * pxIPPacket,
NetworkBufferDescriptor_t * const pxNetworkBuffer );
/*
* The network card driver has received a packet. In the case that it is part
* of a linked packet chain, walk through it to handle every message.
*/
static void prvHandleEthernetPacket( NetworkBufferDescriptor_t * pxBuffer );
/* The function 'prvAllowIPPacket()' checks if a packets should be processed. */
static eFrameProcessingResult_t prvAllowIPPacket( const IPPacket_t * const pxIPPacket,
const NetworkBufferDescriptor_t * const pxNetworkBuffer,
UBaseType_t uxHeaderLength );
#if ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 1 )
/* Even when the driver takes care of checksum calculations,
* the IP-task will still check if the length fields are OK. */
static BaseType_t xCheckSizeFields( const uint8_t * const pucEthernetBuffer,
size_t uxBufferLength );
#endif /* ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 1 ) */
/*-----------------------------------------------------------*/
/** @brief The queue used to pass events into the IP-task for processing. */
QueueHandle_t xNetworkEventQueue = NULL;
/** @brief The IP packet ID. */
uint16_t usPacketIdentifier = 0U;
/** @brief For convenience, a MAC address of all 0xffs is defined const for quick
* reference. */
const MACAddress_t xBroadcastMACAddress = { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
/** @brief Structure that stores the netmask, gateway address and DNS server addresses. */
NetworkAddressingParameters_t xNetworkAddressing = { 0, 0, 0, 0, 0 };
/** @brief Default values for the above struct in case DHCP
* does not lead to a confirmed request. */
NetworkAddressingParameters_t xDefaultAddressing = { 0, 0, 0, 0, 0 };
/** @brief Used to ensure network down events cannot be missed when they cannot be
* posted to the network event queue because the network event queue is already
* full. */
static volatile BaseType_t xNetworkDownEventPending = pdFALSE;
/** @brief Stores the handle of the task that handles the stack. The handle is used
* (indirectly) by some utility function to determine if the utility function is
* being called by a task (in which case it is ok to block) or by the IP task
* itself (in which case it is not ok to block). */
static TaskHandle_t xIPTaskHandle = NULL;
/** @brief Simple set to pdTRUE or pdFALSE depending on whether the network is up or
* down (connected, not connected) respectively. */
static BaseType_t xNetworkUp = pdFALSE;
/** @brief Set to pdTRUE when the IP task is ready to start processing packets. */
static BaseType_t xIPTaskInitialised = pdFALSE;
#if ( ipconfigCHECK_IP_QUEUE_SPACE != 0 )
/** @brief Keep track of the lowest amount of space in 'xNetworkEventQueue'. */
static UBaseType_t uxQueueMinimumSpace = ipconfigEVENT_QUEUE_LENGTH;
#endif
/*-----------------------------------------------------------*/
/* Coverity wants to make pvParameters const, which would make it incompatible. Leave the
* function signature as is. */
/**
* @brief The IP task handles all requests from the user application and the
* network interface. It receives messages through a FreeRTOS queue called
* 'xNetworkEventQueue'. prvIPTask() is the only task which has access to
* the data of the IP-stack, and so it has no need of using mutexes.
*
* @param[in] pvParameters: Not used.
*/
static void prvIPTask( const void * pvParameters )
{
/* Just to prevent compiler warnings about unused parameters. */
( void ) pvParameters;
/* A possibility to set some additional task properties. */
iptraceIP_TASK_STARTING();
/* Generate a dummy message to say that the network connection has gone
* down. This will cause this task to initialise the network interface. After
* this it is the responsibility of the network interface hardware driver to
* send this message if a previously connected network is disconnected. */
FreeRTOS_NetworkDown();
#if ( ipconfigUSE_TCP == 1 )
{
/* Initialise the TCP timer. */
vTCPTimerReload( pdMS_TO_TICKS( ipTCP_TIMER_PERIOD_MS ) );
}
#endif
/* Mark the timer as inactive since we are not waiting on any ARP resolution as of now. */
vIPSetARPResolutionTimerEnableState( pdFALSE );
/* Initialisation is complete and events can now be processed. */
xIPTaskInitialised = pdTRUE;
FreeRTOS_debug_printf( ( "prvIPTask started\n" ) );
/* Loop, processing IP events. */
while( ipFOREVER() == pdTRUE )
{
prvProcessIPEventsAndTimers();
}
}
/*-----------------------------------------------------------*/
/**
* @brief Process the events sent to the IP task and process the timers.
*/
static void prvProcessIPEventsAndTimers( void )
{
IPStackEvent_t xReceivedEvent;
TickType_t xNextIPSleep;
FreeRTOS_Socket_t * pxSocket;
struct freertos_sockaddr xAddress;
ipconfigWATCHDOG_TIMER();
/* Check the ARP, DHCP and TCP timers to see if there is any periodic
* or timeout processing to perform. */
vCheckNetworkTimers();
/* Calculate the acceptable maximum sleep time. */
xNextIPSleep = xCalculateSleepTime();
/* Wait until there is something to do. If the following call exits
* due to a time out rather than a message being received, set a
* 'NoEvent' value. */
if( xQueueReceive( xNetworkEventQueue, ( void * ) &xReceivedEvent, xNextIPSleep ) == pdFALSE )
{
xReceivedEvent.eEventType = eNoEvent;
}
#if ( ipconfigCHECK_IP_QUEUE_SPACE != 0 )
{
if( xReceivedEvent.eEventType != eNoEvent )
{
UBaseType_t uxCount;
uxCount = uxQueueSpacesAvailable( xNetworkEventQueue );
if( uxQueueMinimumSpace > uxCount )
{
uxQueueMinimumSpace = uxCount;
}
}
}
#endif /* ipconfigCHECK_IP_QUEUE_SPACE */
iptraceNETWORK_EVENT_RECEIVED( xReceivedEvent.eEventType );
switch( xReceivedEvent.eEventType )
{
case eNetworkDownEvent:
/* Attempt to establish a connection. */
xNetworkUp = pdFALSE;
prvProcessNetworkDownEvent();
break;
case eNetworkRxEvent:
/* The network hardware driver has received a new packet. A
* pointer to the received buffer is located in the pvData member
* of the received event structure. */
prvHandleEthernetPacket( ( NetworkBufferDescriptor_t * ) xReceivedEvent.pvData );
break;
case eNetworkTxEvent:
{
NetworkBufferDescriptor_t * pxDescriptor = ( NetworkBufferDescriptor_t * ) xReceivedEvent.pvData;
/* Send a network packet. The ownership will be transferred to
* the driver, which will release it after delivery. */
iptraceNETWORK_INTERFACE_OUTPUT( pxDescriptor->xDataLength, pxDescriptor->pucEthernetBuffer );
( void ) xNetworkInterfaceOutput( pxDescriptor, pdTRUE );
}
break;
case eARPTimerEvent:
/* The ARP timer has expired, process the ARP cache. */
vARPAgeCache();
break;
case eSocketBindEvent:
/* FreeRTOS_bind (a user API) wants the IP-task to bind a socket
* to a port. The port number is communicated in the socket field
* usLocalPort. vSocketBind() will actually bind the socket and the
* API will unblock as soon as the eSOCKET_BOUND event is
* triggered. */
pxSocket = ( ( FreeRTOS_Socket_t * ) xReceivedEvent.pvData );
xAddress.sin_addr = 0U; /* For the moment. */
xAddress.sin_port = FreeRTOS_ntohs( pxSocket->usLocalPort );
pxSocket->usLocalPort = 0U;
( void ) vSocketBind( pxSocket, &xAddress, sizeof( xAddress ), pdFALSE );
/* Before 'eSocketBindEvent' was sent it was tested that
* ( xEventGroup != NULL ) so it can be used now to wake up the
* user. */
pxSocket->xEventBits |= ( EventBits_t ) eSOCKET_BOUND;
vSocketWakeUpUser( pxSocket );
break;
case eSocketCloseEvent:
/* The user API FreeRTOS_closesocket() has sent a message to the
* IP-task to actually close a socket. This is handled in
* vSocketClose(). As the socket gets closed, there is no way to
* report back to the API, so the API won't wait for the result */
( void ) vSocketClose( ( ( FreeRTOS_Socket_t * ) xReceivedEvent.pvData ) );
break;
case eStackTxEvent:
/* The network stack has generated a packet to send. A
* pointer to the generated buffer is located in the pvData
* member of the received event structure. */
vProcessGeneratedUDPPacket( ( NetworkBufferDescriptor_t * ) xReceivedEvent.pvData );
break;
case eDHCPEvent:
/* The DHCP state machine needs processing. */
#if ( ipconfigUSE_DHCP == 1 )
{
uintptr_t uxState;
eDHCPState_t eState;
/* Cast in two steps to please MISRA. */
uxState = ( uintptr_t ) xReceivedEvent.pvData;
eState = ( eDHCPState_t ) uxState;
/* Process DHCP messages for a given end-point. */
vDHCPProcess( pdFALSE, eState );
}
#endif /* ipconfigUSE_DHCP */
break;
case eSocketSelectEvent:
/* FreeRTOS_select() has got unblocked by a socket event,
* vSocketSelect() will check which sockets actually have an event
* and update the socket field xSocketBits. */
#if ( ipconfigSUPPORT_SELECT_FUNCTION == 1 )
#if ( ipconfigSELECT_USES_NOTIFY != 0 )
{
SocketSelectMessage_t * pxMessage = ( ( SocketSelectMessage_t * ) xReceivedEvent.pvData );
vSocketSelect( pxMessage->pxSocketSet );
( void ) xTaskNotifyGive( pxMessage->xTaskhandle );
}
#else
{
vSocketSelect( ( ( SocketSelect_t * ) xReceivedEvent.pvData ) );
}
#endif /* ( ipconfigSELECT_USES_NOTIFY != 0 ) */
#endif /* ipconfigSUPPORT_SELECT_FUNCTION == 1 */
break;
case eSocketSignalEvent:
#if ( ipconfigSUPPORT_SIGNALS != 0 )
/* Some task wants to signal the user of this socket in
* order to interrupt a call to recv() or a call to select(). */
( void ) FreeRTOS_SignalSocket( ipPOINTER_CAST( Socket_t, xReceivedEvent.pvData ) );
#endif /* ipconfigSUPPORT_SIGNALS */
break;
case eTCPTimerEvent:
#if ( ipconfigUSE_TCP == 1 )
/* Simply mark the TCP timer as expired so it gets processed
* the next time prvCheckNetworkTimers() is called. */
vIPSetTCPTimerExpiredState( pdTRUE );
#endif /* ipconfigUSE_TCP */
break;
case eTCPAcceptEvent:
/* The API FreeRTOS_accept() was called, the IP-task will now
* check if the listening socket (communicated in pvData) actually
* received a new connection. */
#if ( ipconfigUSE_TCP == 1 )
pxSocket = ( ( FreeRTOS_Socket_t * ) xReceivedEvent.pvData );
if( xTCPCheckNewClient( pxSocket ) != pdFALSE )
{
pxSocket->xEventBits |= ( EventBits_t ) eSOCKET_ACCEPT;
vSocketWakeUpUser( pxSocket );
}
#endif /* ipconfigUSE_TCP */
break;
case eTCPNetStat:
/* FreeRTOS_netstat() was called to have the IP-task print an
* overview of all sockets and their connections */
#if ( ( ipconfigUSE_TCP == 1 ) && ( ipconfigHAS_PRINTF == 1 ) )
vTCPNetStat();
#endif /* ipconfigUSE_TCP */
break;
case eSocketSetDeleteEvent:
#if ( ipconfigSUPPORT_SELECT_FUNCTION == 1 )
{
SocketSelect_t * pxSocketSet = ( SocketSelect_t * ) ( xReceivedEvent.pvData );
iptraceMEM_STATS_DELETE( pxSocketSet );
vEventGroupDelete( pxSocketSet->xSelectGroup );
vPortFree( ( void * ) pxSocketSet );
}
#endif /* ipconfigSUPPORT_SELECT_FUNCTION == 1 */
break;
case eNoEvent:
/* xQueueReceive() returned because of a normal time-out. */
break;
default:
/* Should not get here. */
break;
}
if( xNetworkDownEventPending != pdFALSE )
{
/* A network down event could not be posted to the network event
* queue because the queue was full.
* As this code runs in the IP-task, it can be done directly by
* calling prvProcessNetworkDownEvent(). */
prvProcessNetworkDownEvent();
}
}
/*-----------------------------------------------------------*/
/**
* @brief The variable 'xIPTaskHandle' is declared static. This function
* gives read-only access to it.
*
* @return The handle of the IP-task.
*/
TaskHandle_t FreeRTOS_GetIPTaskHandle( void )
{
return xIPTaskHandle;
}
/*-----------------------------------------------------------*/
/**
* @brief Perform all the required tasks when the network gets connected.
*/
void vIPNetworkUpCalls( void )
{
xNetworkUp = pdTRUE;
#if ( ipconfigUSE_NETWORK_EVENT_HOOK == 1 )
{
vApplicationIPNetworkEventHook( eNetworkUp );
}
#endif /* ipconfigUSE_NETWORK_EVENT_HOOK */
#if ( ipconfigDNS_USE_CALLBACKS != 0 )
{
/* The following function is declared in FreeRTOS_DNS.c and 'private' to
* this library */
extern void vDNSInitialise( void );
vDNSInitialise();
}
#endif /* ipconfigDNS_USE_CALLBACKS != 0 */
/* Set remaining time to 0 so it will become active immediately. */
vARPTimerReload( pdMS_TO_TICKS( ipARP_TIMER_PERIOD_MS ) );
}
/*-----------------------------------------------------------*/
/**
* @brief The variable 'xNetworkDownEventPending' is declared static. This function
* gives read-only access to it.
*
* @return pdTRUE if there a network-down event pending. pdFALSE otherwise.
*/
BaseType_t xIsNetworkDownEventPending( void )
{
return xNetworkDownEventPending;
}
/*-----------------------------------------------------------*/
/**
* @brief Handle the incoming Ethernet packets.
*
* @param[in] pxBuffer: Linked/un-linked network buffer descriptor(s)
* to be processed.
*/
static void prvHandleEthernetPacket( NetworkBufferDescriptor_t * pxBuffer )
{
#if ( ipconfigUSE_LINKED_RX_MESSAGES == 0 )
{
/* When ipconfigUSE_LINKED_RX_MESSAGES is set to 0 then only one
* buffer will be sent at a time. This is the default way for +TCP to pass
* messages from the MAC to the TCP/IP stack. */
prvProcessEthernetPacket( pxBuffer );
}
#else /* ipconfigUSE_LINKED_RX_MESSAGES */
{
NetworkBufferDescriptor_t * pxNextBuffer;
/* An optimisation that is useful when there is high network traffic.
* Instead of passing received packets into the IP task one at a time the
* network interface can chain received packets together and pass them into
* the IP task in one go. The packets are chained using the pxNextBuffer
* member. The loop below walks through the chain processing each packet
* in the chain in turn. */
/* While there is another packet in the chain. */
while( pxBuffer != NULL )
{
/* Store a pointer to the buffer after pxBuffer for use later on. */
pxNextBuffer = pxBuffer->pxNextBuffer;
/* Make it NULL to avoid using it later on. */
pxBuffer->pxNextBuffer = NULL;
prvProcessEthernetPacket( pxBuffer );
pxBuffer = pxNextBuffer;
}
}
#endif /* ipconfigUSE_LINKED_RX_MESSAGES */
}
/*-----------------------------------------------------------*/
/**
* @brief Send a network down event to the IP-task. If it fails to post a message,
* the failure will be noted in the variable 'xNetworkDownEventPending'
* and later on a 'network-down' event, it will be executed.
*/
void FreeRTOS_NetworkDown( void )
{
static const IPStackEvent_t xNetworkDownEvent = { eNetworkDownEvent, NULL };
const TickType_t xDontBlock = ( TickType_t ) 0;
/* Simply send the network task the appropriate event. */
if( xSendEventStructToIPTask( &xNetworkDownEvent, xDontBlock ) != pdPASS )
{
/* Could not send the message, so it is still pending. */
xNetworkDownEventPending = pdTRUE;
}
else
{
/* Message was sent so it is not pending. */
xNetworkDownEventPending = pdFALSE;
}
iptraceNETWORK_DOWN();
}
/*-----------------------------------------------------------*/
/**
* @brief Utility function. Process Network Down event from ISR.
* This function is supposed to be called form an ISR. It is recommended
* - * use 'FreeRTOS_NetworkDown()', when calling from a normal task.
*
* @return If the event was processed successfully, then return pdTRUE.
* Else pdFALSE.
*/
BaseType_t FreeRTOS_NetworkDownFromISR( void )
{
static const IPStackEvent_t xNetworkDownEvent = { eNetworkDownEvent, NULL };
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
/* Simply send the network task the appropriate event. */
if( xQueueSendToBackFromISR( xNetworkEventQueue, &xNetworkDownEvent, &xHigherPriorityTaskWoken ) != pdPASS )
{
xNetworkDownEventPending = pdTRUE;
}
else
{
xNetworkDownEventPending = pdFALSE;
}
iptraceNETWORK_DOWN();
return xHigherPriorityTaskWoken;
}
/*-----------------------------------------------------------*/
/**
* @brief Obtain a buffer big enough for a UDP payload of given size.
*
* @param[in] uxRequestedSizeBytes: The size of the UDP payload.
* @param[in] uxBlockTimeTicks: Maximum amount of time for which this call
* can block. This value is capped internally.
*
* @return If a buffer was created then the pointer to that buffer is returned,
* else a NULL pointer is returned.
*/
void * FreeRTOS_GetUDPPayloadBuffer( size_t uxRequestedSizeBytes,
TickType_t uxBlockTimeTicks )
{
NetworkBufferDescriptor_t * pxNetworkBuffer;
void * pvReturn;
TickType_t uxBlockTime = uxBlockTimeTicks;
/* Cap the block time. The reason for this is explained where
* ipconfigUDP_MAX_SEND_BLOCK_TIME_TICKS is defined (assuming an official
* FreeRTOSIPConfig.h header file is being used). */
if( uxBlockTime > ipconfigUDP_MAX_SEND_BLOCK_TIME_TICKS )
{
uxBlockTime = ipconfigUDP_MAX_SEND_BLOCK_TIME_TICKS;
}
/* Obtain a network buffer with the required amount of storage. */
pxNetworkBuffer = pxGetNetworkBufferWithDescriptor( sizeof( UDPPacket_t ) + uxRequestedSizeBytes, uxBlockTime );
if( pxNetworkBuffer != NULL )
{
/* Set the actual packet size in case a bigger buffer was returned. */
pxNetworkBuffer->xDataLength = sizeof( UDPPacket_t ) + uxRequestedSizeBytes;
/* Skip 3 headers. */
pvReturn = &( pxNetworkBuffer->pucEthernetBuffer[ sizeof( UDPPacket_t ) ] );
}
else
{
pvReturn = NULL;
}
return ( void * ) pvReturn;
}
/*-----------------------------------------------------------*/
/*_RB_ Should we add an error or assert if the task priorities are set such that the servers won't function as expected? */
/*_HT_ There was a bug in FreeRTOS_TCP_IP.c that only occurred when the applications' priority was too high.
* As that bug has been repaired, there is not an urgent reason to warn.
* It is better though to use the advised priority scheme. */
/**
* @brief Initialise the FreeRTOS-Plus-TCP network stack and initialise the IP-task.
*
* @param[in] ucIPAddress: Local IP address.
* @param[in] ucNetMask: Local netmask.
* @param[in] ucGatewayAddress: Local gateway address.
* @param[in] ucDNSServerAddress: Local DNS server address.
* @param[in] ucMACAddress: MAC address of the node.
*
* @return pdPASS if the task was successfully created and added to a ready
* list, otherwise an error code defined in the file projdefs.h
*/
BaseType_t FreeRTOS_IPInit( const uint8_t ucIPAddress[ ipIP_ADDRESS_LENGTH_BYTES ],
const uint8_t ucNetMask[ ipIP_ADDRESS_LENGTH_BYTES ],
const uint8_t ucGatewayAddress[ ipIP_ADDRESS_LENGTH_BYTES ],
const uint8_t ucDNSServerAddress[ ipIP_ADDRESS_LENGTH_BYTES ],
const uint8_t ucMACAddress[ ipMAC_ADDRESS_LENGTH_BYTES ] )
{
BaseType_t xReturn = pdFALSE;
/* Check that the configuration values are correct and that the IP-task has not
* already been initialized. */
vPreCheckConfigs();
/* Attempt to create the queue used to communicate with the IP task. */
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
static StaticQueue_t xNetworkEventStaticQueue;
static uint8_t ucNetworkEventQueueStorageArea[ ipconfigEVENT_QUEUE_LENGTH * sizeof( IPStackEvent_t ) ];
xNetworkEventQueue = xQueueCreateStatic( ipconfigEVENT_QUEUE_LENGTH,
sizeof( IPStackEvent_t ),
ucNetworkEventQueueStorageArea,
&xNetworkEventStaticQueue );
}
#else
{
xNetworkEventQueue = xQueueCreate( ipconfigEVENT_QUEUE_LENGTH, sizeof( IPStackEvent_t ) );
configASSERT( xNetworkEventQueue != NULL );
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
if( xNetworkEventQueue != NULL )
{
#if ( configQUEUE_REGISTRY_SIZE > 0 )
{
/* A queue registry is normally used to assist a kernel aware
* debugger. If one is in use then it will be helpful for the debugger
* to show information about the network event queue. */
vQueueAddToRegistry( xNetworkEventQueue, "NetEvnt" );
}
#endif /* configQUEUE_REGISTRY_SIZE */
if( xNetworkBuffersInitialise() == pdPASS )
{
/* Store the local IP and MAC address. */
xNetworkAddressing.ulDefaultIPAddress = FreeRTOS_inet_addr_quick( ucIPAddress[ 0 ], ucIPAddress[ 1 ], ucIPAddress[ 2 ], ucIPAddress[ 3 ] );
xNetworkAddressing.ulNetMask = FreeRTOS_inet_addr_quick( ucNetMask[ 0 ], ucNetMask[ 1 ], ucNetMask[ 2 ], ucNetMask[ 3 ] );
xNetworkAddressing.ulGatewayAddress = FreeRTOS_inet_addr_quick( ucGatewayAddress[ 0 ], ucGatewayAddress[ 1 ], ucGatewayAddress[ 2 ], ucGatewayAddress[ 3 ] );
xNetworkAddressing.ulDNSServerAddress = FreeRTOS_inet_addr_quick( ucDNSServerAddress[ 0 ], ucDNSServerAddress[ 1 ], ucDNSServerAddress[ 2 ], ucDNSServerAddress[ 3 ] );
xNetworkAddressing.ulBroadcastAddress = ( xNetworkAddressing.ulDefaultIPAddress & xNetworkAddressing.ulNetMask ) | ~xNetworkAddressing.ulNetMask;
( void ) memcpy( &xDefaultAddressing, &xNetworkAddressing, sizeof( xDefaultAddressing ) );
#if ipconfigUSE_DHCP == 1
{
/* The IP address is not set until DHCP completes. */
*ipLOCAL_IP_ADDRESS_POINTER = 0x00U;
}
#else
{
/* The IP address is set from the value passed in. */
*ipLOCAL_IP_ADDRESS_POINTER = xNetworkAddressing.ulDefaultIPAddress;
/* Added to prevent ARP flood to gateway. Ensure the
* gateway is on the same subnet as the IP address. */
if( xNetworkAddressing.ulGatewayAddress != 0U )
{
configASSERT( ( ( *ipLOCAL_IP_ADDRESS_POINTER ) & xNetworkAddressing.ulNetMask ) == ( xNetworkAddressing.ulGatewayAddress & xNetworkAddressing.ulNetMask ) );
}
}
#endif /* ipconfigUSE_DHCP == 1 */
/* The MAC address is stored in the start of the default packet
* header fragment, which is used when sending UDP packets. */
( void ) memcpy( ipLOCAL_MAC_ADDRESS, ucMACAddress, ( size_t ) ipMAC_ADDRESS_LENGTH_BYTES );
/* Prepare the sockets interface. */
vNetworkSocketsInit();
/* Create the task that processes Ethernet and stack events. */
#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
{
static StaticTask_t xIPTaskBuffer;
static StackType_t xIPTaskStack[ ipconfigIP_TASK_STACK_SIZE_WORDS ];
xIPTaskHandle = xTaskCreateStatic( prvIPTask,
"IP-Task",
ipconfigIP_TASK_STACK_SIZE_WORDS,
NULL,
ipconfigIP_TASK_PRIORITY,
xIPTaskStack,
&xIPTaskBuffer );
if( xIPTaskHandle != NULL )
{
xReturn = pdTRUE;
}
}
#else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
{
xReturn = xTaskCreate( prvIPTask,
"IP-task",
ipconfigIP_TASK_STACK_SIZE_WORDS,
NULL,
ipconfigIP_TASK_PRIORITY,
&( xIPTaskHandle ) );
}
#endif /* configSUPPORT_STATIC_ALLOCATION */
}
else
{
FreeRTOS_debug_printf( ( "FreeRTOS_IPInit: xNetworkBuffersInitialise() failed\n" ) );
/* Clean up. */
vQueueDelete( xNetworkEventQueue );
xNetworkEventQueue = NULL;
}
}
else
{
FreeRTOS_debug_printf( ( "FreeRTOS_IPInit: Network event queue could not be created\n" ) );
}
return xReturn;
}
/*-----------------------------------------------------------*/
/**
* @brief Get the current address configuration. Only non-NULL pointers will
* be filled in.
*
* @param[out] pulIPAddress: The current IP-address assigned.
* @param[out] pulNetMask: The netmask used for current subnet.
* @param[out] pulGatewayAddress: The gateway address.
* @param[out] pulDNSServerAddress: The DNS server address.
*/
void FreeRTOS_GetAddressConfiguration( uint32_t * pulIPAddress,
uint32_t * pulNetMask,
uint32_t * pulGatewayAddress,
uint32_t * pulDNSServerAddress )
{
/* Return the address configuration to the caller. */
if( pulIPAddress != NULL )
{
*pulIPAddress = *ipLOCAL_IP_ADDRESS_POINTER;
}
if( pulNetMask != NULL )
{
*pulNetMask = xNetworkAddressing.ulNetMask;
}
if( pulGatewayAddress != NULL )
{
*pulGatewayAddress = xNetworkAddressing.ulGatewayAddress;
}
if( pulDNSServerAddress != NULL )
{
*pulDNSServerAddress = xNetworkAddressing.ulDNSServerAddress;
}
}
/*-----------------------------------------------------------*/
/**
* @brief Set the current network address configuration. Only non-NULL pointers will
* be used.
*
* @param[in] pulIPAddress: The current IP-address assigned.
* @param[in] pulNetMask: The netmask used for current subnet.
* @param[in] pulGatewayAddress: The gateway address.
* @param[in] pulDNSServerAddress: The DNS server address.
*/
void FreeRTOS_SetAddressConfiguration( const uint32_t * pulIPAddress,
const uint32_t * pulNetMask,
const uint32_t * pulGatewayAddress,
const uint32_t * pulDNSServerAddress )
{
/* Update the address configuration. */
if( pulIPAddress != NULL )
{
*ipLOCAL_IP_ADDRESS_POINTER = *pulIPAddress;
}
if( pulNetMask != NULL )
{
xNetworkAddressing.ulNetMask = *pulNetMask;
}
if( pulGatewayAddress != NULL )
{
xNetworkAddressing.ulGatewayAddress = *pulGatewayAddress;
}
if( pulDNSServerAddress != NULL )
{
xNetworkAddressing.ulDNSServerAddress = *pulDNSServerAddress;
}
}
/*-----------------------------------------------------------*/
/**
* @brief Release the UDP payload buffer.
*
* @param[in] pvBuffer: Pointer to the UDP buffer that is to be released.
*/
void FreeRTOS_ReleaseUDPPayloadBuffer( void const * pvBuffer )
{
vReleaseNetworkBufferAndDescriptor( pxUDPPayloadBuffer_to_NetworkBuffer( pvBuffer ) );
}
/*-----------------------------------------------------------*/
#if ( ipconfigUSE_TCP == 1 )
/**
* @brief Release the memory that was previously obtained by calling FreeRTOS_recv()
* with the flag 'FREERTOS_ZERO_COPY'.
*
* @param[in] xSocket: The socket that was read from.
* @param[in] pvBuffer: The buffer returned in the call to FreeRTOS_recv().
* @param[in] xByteCount: The number of bytes that have been used.
*
* @return pdPASS if the buffer was released successfully, otherwise pdFAIL is returned.
*/
BaseType_t FreeRTOS_ReleaseTCPPayloadBuffer( Socket_t xSocket,
void const * pvBuffer,
BaseType_t xByteCount )
{
BaseType_t xByteCountReleased;
BaseType_t xReturn = pdFAIL;
uint8_t * pucData;
size_t uxBytesAvailable = uxStreamBufferGetPtr( xSocket->u.xTCP.rxStream, &( pucData ) );
/* Make sure the pointer is correct. */
configASSERT( pucData == ( uint8_t * ) pvBuffer );
/* Avoid releasing more bytes than available. */
configASSERT( uxBytesAvailable >= ( size_t ) xByteCount );
if( ( pucData == pvBuffer ) && ( uxBytesAvailable >= ( size_t ) xByteCount ) )
{
/* Call recv with NULL pointer to advance the circular buffer. */
xByteCountReleased = FreeRTOS_recv( xSocket,
NULL,
( size_t ) xByteCount,
FREERTOS_MSG_DONTWAIT );
configASSERT( xByteCountReleased == xByteCount );
if( xByteCountReleased == xByteCount )
{
xReturn = pdPASS;
}
}
return xReturn;
}
#endif /* ( ipconfigUSE_TCP == 1 ) */
/*-----------------------------------------------------------*/
#if ( ipconfigSUPPORT_OUTGOING_PINGS == 1 )
/**
* @brief Send a ping request to the given IP address. After receiving a reply,
* IP-task will call a user-supplied function 'vApplicationPingReplyHook()'.
*
* @param[in] ulIPAddress: The IP address to which the ping is to be sent.
* @param[in] uxNumberOfBytesToSend: Number of bytes in the ping request.
* @param[in] uxBlockTimeTicks: Maximum number of ticks to wait.
*
* @return If successfully sent to IP task for processing then the sequence
* number of the ping packet or else, pdFAIL.
*/
BaseType_t FreeRTOS_SendPingRequest( uint32_t ulIPAddress,
size_t uxNumberOfBytesToSend,
TickType_t uxBlockTimeTicks )
{
NetworkBufferDescriptor_t * pxNetworkBuffer;
ICMPHeader_t * pxICMPHeader;
EthernetHeader_t * pxEthernetHeader;
BaseType_t xReturn = pdFAIL;
static uint16_t usSequenceNumber = 0;
uint8_t * pucChar;
size_t uxTotalLength;
IPStackEvent_t xStackTxEvent = { eStackTxEvent, NULL };
uxTotalLength = uxNumberOfBytesToSend + sizeof( ICMPPacket_t );
BaseType_t xEnoughSpace;
if( uxNumberOfBytesToSend < ( ipconfigNETWORK_MTU - ( sizeof( IPHeader_t ) + sizeof( ICMPHeader_t ) ) ) )
{
xEnoughSpace = pdTRUE;
}
else
{
xEnoughSpace = pdFALSE;
}
if( ( uxGetNumberOfFreeNetworkBuffers() >= 4U ) && ( uxNumberOfBytesToSend >= 1U ) && ( xEnoughSpace != pdFALSE ) )
{
pxNetworkBuffer = pxGetNetworkBufferWithDescriptor( uxTotalLength, uxBlockTimeTicks );
if( pxNetworkBuffer != NULL )
{
pxEthernetHeader = ( ( EthernetHeader_t * ) pxNetworkBuffer->pucEthernetBuffer );
pxEthernetHeader->usFrameType = ipIPv4_FRAME_TYPE;
pxICMPHeader = ( ( ICMPHeader_t * ) &( pxNetworkBuffer->pucEthernetBuffer[ ipIP_PAYLOAD_OFFSET ] ) );
usSequenceNumber++;
/* Fill in the basic header information. */
pxICMPHeader->ucTypeOfMessage = ipICMP_ECHO_REQUEST;
pxICMPHeader->ucTypeOfService = 0;
pxICMPHeader->usIdentifier = usSequenceNumber;
pxICMPHeader->usSequenceNumber = usSequenceNumber;
/* Find the start of the data. */
pucChar = ( uint8_t * ) pxICMPHeader;
pucChar = &( pucChar[ sizeof( ICMPHeader_t ) ] );
/* Just memset the data to a fixed value. */
( void ) memset( pucChar, ( int ) ipECHO_DATA_FILL_BYTE, uxNumberOfBytesToSend );
/* The message is complete, IP and checksum's are handled by
* vProcessGeneratedUDPPacket */
pxNetworkBuffer->pucEthernetBuffer[ ipSOCKET_OPTIONS_OFFSET ] = FREERTOS_SO_UDPCKSUM_OUT;
pxNetworkBuffer->ulIPAddress = ulIPAddress;
pxNetworkBuffer->usPort = ipPACKET_CONTAINS_ICMP_DATA;
/* xDataLength is the size of the total packet, including the Ethernet header. */
pxNetworkBuffer->xDataLength = uxTotalLength;
/* Send to the stack. */
xStackTxEvent.pvData = pxNetworkBuffer;
if( xSendEventStructToIPTask( &( xStackTxEvent ), uxBlockTimeTicks ) != pdPASS )
{
vReleaseNetworkBufferAndDescriptor( pxNetworkBuffer );
iptraceSTACK_TX_EVENT_LOST( ipSTACK_TX_EVENT );
}
else
{
xReturn = ( BaseType_t ) usSequenceNumber;
}
}
}
else
{
/* The requested number of bytes will not fit in the available space
* in the network buffer. */
}
return xReturn;
}
#endif /* ipconfigSUPPORT_OUTGOING_PINGS == 1 */
/*-----------------------------------------------------------*/
/**
* @brief Send an event to the IP task. It calls 'xSendEventStructToIPTask' internally.
*
* @param[in] eEvent: The event to be sent.
*
* @return pdPASS if the event was sent (or the desired effect was achieved). Else, pdFAIL.
*/
BaseType_t xSendEventToIPTask( eIPEvent_t eEvent )
{
IPStackEvent_t xEventMessage;
const TickType_t xDontBlock = ( TickType_t ) 0;
xEventMessage.eEventType = eEvent;
xEventMessage.pvData = ( void * ) NULL;
return xSendEventStructToIPTask( &xEventMessage, xDontBlock );
}
/*-----------------------------------------------------------*/
/**
* @brief Send an event (in form of struct) to the IP task to be processed.
*
* @param[in] pxEvent: The event to be sent.
* @param[in] uxTimeout: Timeout for waiting in case the queue is full. 0 for non-blocking calls.
*
* @return pdPASS if the event was sent (or the desired effect was achieved). Else, pdFAIL.
*/
BaseType_t xSendEventStructToIPTask( const IPStackEvent_t * pxEvent,
TickType_t uxTimeout )
{
BaseType_t xReturn, xSendMessage;
TickType_t uxUseTimeout = uxTimeout;
if( ( xIPIsNetworkTaskReady() == pdFALSE ) && ( pxEvent->eEventType != eNetworkDownEvent ) )
{
/* Only allow eNetworkDownEvent events if the IP task is not ready
* yet. Not going to attempt to send the message so the send failed. */
xReturn = pdFAIL;
}
else
{
xSendMessage = pdTRUE;
#if ( ipconfigUSE_TCP == 1 )
{
if( pxEvent->eEventType == eTCPTimerEvent )
{
/* TCP timer events are sent to wake the timer task when
* xTCPTimer has expired, but there is no point sending them if the
* IP task is already awake processing other message. */
vIPSetTCPTimerExpiredState( pdTRUE );
if( uxQueueMessagesWaiting( xNetworkEventQueue ) != 0U )
{
/* Not actually going to send the message but this is not a
* failure as the message didn't need to be sent. */
xSendMessage = pdFALSE;
}
}
}
#endif /* ipconfigUSE_TCP */
if( xSendMessage != pdFALSE )
{
/* The IP task cannot block itself while waiting for itself to
* respond. */
if( ( xIsCallingFromIPTask() == pdTRUE ) && ( uxUseTimeout > ( TickType_t ) 0U ) )
{
uxUseTimeout = ( TickType_t ) 0;
}
xReturn = xQueueSendToBack( xNetworkEventQueue, pxEvent, uxUseTimeout );
if( xReturn == pdFAIL )
{
/* A message should have been sent to the IP task, but wasn't. */
FreeRTOS_debug_printf( ( "xSendEventStructToIPTask: CAN NOT ADD %d\n", pxEvent->eEventType ) );
iptraceSTACK_TX_EVENT_LOST( pxEvent->eEventType );
}
}
else
{
/* It was not necessary to send the message to process the event so
* even though the message was not sent the call was successful. */
xReturn = pdPASS;
}
}
return xReturn;
}
/*-----------------------------------------------------------*/
/**
* @brief Decide whether this packet should be processed or not based on the IP address in the packet.
*
* @param[in] pucEthernetBuffer: The ethernet packet under consideration.
*
* @return Enum saying whether to release or to process the packet.
*/
eFrameProcessingResult_t eConsiderFrameForProcessing( const uint8_t * const pucEthernetBuffer )
{
eFrameProcessingResult_t eReturn;
const EthernetHeader_t * pxEthernetHeader;
/* Map the buffer onto Ethernet Header struct for easy access to fields. */
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
pxEthernetHeader = ( ( const EthernetHeader_t * ) pucEthernetBuffer );
if( memcmp( ipLOCAL_MAC_ADDRESS, pxEthernetHeader->xDestinationAddress.ucBytes, sizeof( MACAddress_t ) ) == 0 )
{
/* The packet was directed to this node - process it. */
eReturn = eProcessBuffer;
}
else if( memcmp( xBroadcastMACAddress.ucBytes, pxEthernetHeader->xDestinationAddress.ucBytes, sizeof( MACAddress_t ) ) == 0 )
{
/* The packet was a broadcast - process it. */
eReturn = eProcessBuffer;
}
else
#if ( ipconfigUSE_LLMNR == 1 )
if( memcmp( xLLMNR_MacAdress.ucBytes, pxEthernetHeader->xDestinationAddress.ucBytes, sizeof( MACAddress_t ) ) == 0 )
{
/* The packet is a request for LLMNR - process it. */
eReturn = eProcessBuffer;
}
else
#endif /* ipconfigUSE_LLMNR */
{
/* The packet was not a broadcast, or for this node, just release
* the buffer without taking any other action. */
eReturn = eReleaseBuffer;
}
#if ( ipconfigFILTER_OUT_NON_ETHERNET_II_FRAMES == 1 )
{
uint16_t usFrameType;
if( eReturn == eProcessBuffer )
{
usFrameType = pxEthernetHeader->usFrameType;
usFrameType = FreeRTOS_ntohs( usFrameType );
if( usFrameType <= 0x600U )
{
/* Not an Ethernet II frame. */
eReturn = eReleaseBuffer;
}
}
}
#endif /* ipconfigFILTER_OUT_NON_ETHERNET_II_FRAMES == 1 */
return eReturn;
}
/*-----------------------------------------------------------*/
/**
* @brief Process the Ethernet packet.
*
* @param[in,out] pxNetworkBuffer: the network buffer containing the ethernet packet. If the
* buffer is large enough, it may be reused to send a reply.
*/
static void prvProcessEthernetPacket( NetworkBufferDescriptor_t * const pxNetworkBuffer )
{
const EthernetHeader_t * pxEthernetHeader;
eFrameProcessingResult_t eReturned = eReleaseBuffer;
configASSERT( pxNetworkBuffer != NULL );
iptraceNETWORK_INTERFACE_INPUT( pxNetworkBuffer->xDataLength, pxNetworkBuffer->pucEthernetBuffer );
/* Interpret the Ethernet frame. */
if( pxNetworkBuffer->xDataLength >= sizeof( EthernetHeader_t ) )
{
eReturned = ipCONSIDER_FRAME_FOR_PROCESSING( pxNetworkBuffer->pucEthernetBuffer );
/* Map the buffer onto the Ethernet Header struct for easy access to the fields. */
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
pxEthernetHeader = ( ( const EthernetHeader_t * ) pxNetworkBuffer->pucEthernetBuffer );
/* The condition "eReturned == eProcessBuffer" must be true. */
#if ( ipconfigETHERNET_DRIVER_FILTERS_FRAME_TYPES == 0 )
if( eReturned == eProcessBuffer )
#endif
{
/* Interpret the received Ethernet packet. */
switch( pxEthernetHeader->usFrameType )
{
case ipARP_FRAME_TYPE:
/* The Ethernet frame contains an ARP packet. */
if( pxNetworkBuffer->xDataLength >= sizeof( ARPPacket_t ) )
{
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
eReturned = eARPProcessPacket( ( ( ARPPacket_t * ) pxNetworkBuffer->pucEthernetBuffer ) );
}
else
{
eReturned = eReleaseBuffer;
}
break;
case ipIPv4_FRAME_TYPE:
/* The Ethernet frame contains an IP packet. */
if( pxNetworkBuffer->xDataLength >= sizeof( IPPacket_t ) )
{
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
eReturned = prvProcessIPPacket( ( ( IPPacket_t * ) pxNetworkBuffer->pucEthernetBuffer ), pxNetworkBuffer );
}
else
{
eReturned = eReleaseBuffer;
}
break;
default:
#if ( ipconfigPROCESS_CUSTOM_ETHERNET_FRAMES != 0 )
/* Custom frame handler. */
eReturned = eApplicationProcessCustomFrameHook( pxNetworkBuffer );
#else
/* No other packet types are handled. Nothing to do. */
eReturned = eReleaseBuffer;
#endif
break;
}
}
}
/* Perform any actions that resulted from processing the Ethernet frame. */
switch( eReturned )
{
case eReturnEthernetFrame:
/* The Ethernet frame will have been updated (maybe it was
* an ARP request or a PING request?) and should be sent back to
* its source. */
vReturnEthernetFrame( pxNetworkBuffer, pdTRUE );
/* parameter pdTRUE: the buffer must be released once
* the frame has been transmitted */
break;
case eFrameConsumed:
/* The frame is in use somewhere, don't release the buffer
* yet. */
break;
case eWaitingARPResolution:
if( pxARPWaitingNetworkBuffer == NULL )
{
pxARPWaitingNetworkBuffer = pxNetworkBuffer;
vIPTimerStartARPResolution( ipARP_RESOLUTION_MAX_DELAY );
iptraceDELAYED_ARP_REQUEST_STARTED();
}
else
{
/* We are already waiting on one ARP resolution. This frame will be dropped. */
vReleaseNetworkBufferAndDescriptor( pxNetworkBuffer );
iptraceDELAYED_ARP_BUFFER_FULL();
}
break;
case eReleaseBuffer:
case eProcessBuffer:
default:
/* The frame is not being used anywhere, and the
* NetworkBufferDescriptor_t structure containing the frame should
* just be released back to the list of free buffers. */
vReleaseNetworkBufferAndDescriptor( pxNetworkBuffer );
break;
}
}
/*-----------------------------------------------------------*/
/**
* @brief Is the IP address an IPv4 multicast address.
*
* @param[in] ulIPAddress: The IP address being checked.
*
* @return pdTRUE if the IP address is a multicast address or else, pdFALSE.
*/
BaseType_t xIsIPv4Multicast( uint32_t ulIPAddress )
{
BaseType_t xReturn;
uint32_t ulIP = FreeRTOS_ntohl( ulIPAddress );
if( ( ulIP >= ipFIRST_MULTI_CAST_IPv4 ) && ( ulIP < ipLAST_MULTI_CAST_IPv4 ) )
{
xReturn = pdTRUE;
}
else
{
xReturn = pdFALSE;
}
return xReturn;
}
/*-----------------------------------------------------------*/
/**
* @brief Check whether this IP packet is to be allowed or to be dropped.
*
* @param[in] pxIPPacket: The IP packet under consideration.
* @param[in] pxNetworkBuffer: The whole network buffer.
* @param[in] uxHeaderLength: The length of the header.
*
* @return Whether the packet should be processed or dropped.
*/
static eFrameProcessingResult_t prvAllowIPPacket( const IPPacket_t * const pxIPPacket,
const NetworkBufferDescriptor_t * const pxNetworkBuffer,
UBaseType_t uxHeaderLength )
{
eFrameProcessingResult_t eReturn = eProcessBuffer;
#if ( ( ipconfigETHERNET_DRIVER_FILTERS_PACKETS == 0 ) || ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 0 ) )
const IPHeader_t * pxIPHeader = &( pxIPPacket->xIPHeader );
#else
/* or else, the parameter won't be used and the function will be optimised
* away */
( void ) pxIPPacket;
#endif
#if ( ipconfigETHERNET_DRIVER_FILTERS_PACKETS == 0 )
{
/* In systems with a very small amount of RAM, it might be advantageous
* to have incoming messages checked earlier, by the network card driver.
* This method may decrease the usage of sparse network buffers. */
uint32_t ulDestinationIPAddress = pxIPHeader->ulDestinationIPAddress;
uint32_t ulSourceIPAddress = pxIPHeader->ulSourceIPAddress;
/* Ensure that the incoming packet is not fragmented because the stack
* doesn't not support IP fragmentation. All but the last fragment coming in will have their
* "more fragments" flag set and the last fragment will have a non-zero offset.
* We need to drop the packet in either of those cases. */
if( ( ( pxIPHeader->usFragmentOffset & ipFRAGMENT_OFFSET_BIT_MASK ) != 0U ) || ( ( pxIPHeader->usFragmentOffset & ipFRAGMENT_FLAGS_MORE_FRAGMENTS ) != 0U ) )
{
/* Can not handle, fragmented packet. */
eReturn = eReleaseBuffer;
}
/* Test if the length of the IP-header is between 20 and 60 bytes,
* and if the IP-version is 4. */
else if( ( pxIPHeader->ucVersionHeaderLength < ipIPV4_VERSION_HEADER_LENGTH_MIN ) ||
( pxIPHeader->ucVersionHeaderLength > ipIPV4_VERSION_HEADER_LENGTH_MAX ) )
{
/* Can not handle, unknown or invalid header version. */
eReturn = eReleaseBuffer;
}
/* Is the packet for this IP address? */
else if( ( ulDestinationIPAddress != *ipLOCAL_IP_ADDRESS_POINTER ) &&
/* Is it the global broadcast address 255.255.255.255 ? */
( ulDestinationIPAddress != ipBROADCAST_IP_ADDRESS ) &&
/* Is it a specific broadcast address 192.168.1.255 ? */
( ulDestinationIPAddress != xNetworkAddressing.ulBroadcastAddress ) &&
#if ( ipconfigUSE_LLMNR == 1 )
/* Is it the LLMNR multicast address? */
( ulDestinationIPAddress != ipLLMNR_IP_ADDR ) &&
#endif
/* Or (during DHCP negotiation) we have no IP-address yet? */
( *ipLOCAL_IP_ADDRESS_POINTER != 0U ) )
{
/* Packet is not for this node, release it */
eReturn = eReleaseBuffer;
}
/* Is the source address correct? */
else if( ( FreeRTOS_ntohl( ulSourceIPAddress ) & 0xffU ) == 0xffU )
{
/* The source address cannot be broadcast address. Replying to this
* packet may cause network storms. Drop the packet. */
eReturn = eReleaseBuffer;
}
else if( ( memcmp( xBroadcastMACAddress.ucBytes,
pxIPPacket->xEthernetHeader.xDestinationAddress.ucBytes,
sizeof( MACAddress_t ) ) == 0 ) &&
( ( FreeRTOS_ntohl( ulDestinationIPAddress ) & 0xffU ) != 0xffU ) )
{
/* Ethernet address is a broadcast address, but the IP address is not a
* broadcast address. */
eReturn = eReleaseBuffer;
}
else if( memcmp( xBroadcastMACAddress.ucBytes,
pxIPPacket->xEthernetHeader.xSourceAddress.ucBytes,
sizeof( MACAddress_t ) ) == 0 )
{
/* Ethernet source is a broadcast address. Drop the packet. */
eReturn = eReleaseBuffer;
}
else if( xIsIPv4Multicast( ulSourceIPAddress ) == pdTRUE )
{
/* Source is a multicast IP address. Drop the packet in conformity with RFC 1112 section 7.2. */
eReturn = eReleaseBuffer;
}
else
{
/* Packet is not fragmented, destination is this device, source IP and MAC
* addresses are correct. */
}
}
#endif /* ipconfigETHERNET_DRIVER_FILTERS_PACKETS */
#if ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 0 )
{
/* Some drivers of NIC's with checksum-offloading will enable the above
* define, so that the checksum won't be checked again here */
if( eReturn == eProcessBuffer )
{
/* Is the IP header checksum correct?
*
* NOTE: When the checksum of IP header is calculated while not omitting
* the checksum field, the resulting value of the checksum always is 0xffff
* which is denoted by ipCORRECT_CRC. See this wiki for more information:
* https://en.wikipedia.org/wiki/IPv4_header_checksum#Verifying_the_IPv4_header_checksum
* and this RFC: https://tools.ietf.org/html/rfc1624#page-4
*/
if( usGenerateChecksum( 0U, ( uint8_t * ) &( pxIPHeader->ucVersionHeaderLength ), ( size_t ) uxHeaderLength ) != ipCORRECT_CRC )
{
/* Check sum in IP-header not correct. */
eReturn = eReleaseBuffer;
}
/* Is the upper-layer checksum (TCP/UDP/ICMP) correct? */
else if( usGenerateProtocolChecksum( ( uint8_t * ) ( pxNetworkBuffer->pucEthernetBuffer ), pxNetworkBuffer->xDataLength, pdFALSE ) != ipCORRECT_CRC )
{
/* Protocol checksum not accepted. */
eReturn = eReleaseBuffer;
}
else
{
/* The checksum of the received packet is OK. */
}
}
}
#else /* if ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 0 ) */
{
if( eReturn == eProcessBuffer )
{
if( xCheckSizeFields( ( uint8_t * ) ( pxNetworkBuffer->pucEthernetBuffer ), pxNetworkBuffer->xDataLength ) != pdPASS )
{
/* Some of the length checks were not successful. */
eReturn = eReleaseBuffer;
}
}
#if ( ipconfigUDP_PASS_ZERO_CHECKSUM_PACKETS == 0 )
{
/* Check if this is a UDP packet without a checksum. */
if( eReturn == eProcessBuffer )
{
/* ipconfigUDP_PASS_ZERO_CHECKSUM_PACKETS is defined as 0,
* and so UDP packets carrying a protocol checksum of 0, will
* be dropped. */
/* Identify the next protocol. */
if( pxIPPacket->xIPHeader.ucProtocol == ( uint8_t ) ipPROTOCOL_UDP )
{
const ProtocolPacket_t * pxProtPack;
/* pxProtPack will point to the offset were the protocols begin. */
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
pxProtPack = ( ( ProtocolPacket_t * ) &( pxNetworkBuffer->pucEthernetBuffer[ uxHeaderLength - ipSIZE_OF_IPv4_HEADER ] ) );
if( pxProtPack->xUDPPacket.xUDPHeader.usChecksum == ( uint16_t ) 0U )
{
#if ( ipconfigHAS_PRINTF != 0 )
{
static BaseType_t xCount = 0;
/* Exclude this from branch coverage as this is only used for debugging. */
if( xCount < 5 ) /* LCOV_EXCL_BR_LINE */
{
FreeRTOS_printf( ( "prvAllowIPPacket: UDP packet from %xip without CRC dropped\n",
FreeRTOS_ntohl( pxIPPacket->xIPHeader.ulSourceIPAddress ) ) );
xCount++;
}
}
#endif /* ( ipconfigHAS_PRINTF != 0 ) */
/* Protocol checksum not accepted. */
eReturn = eReleaseBuffer;
}
}
}
}
#endif /* ( ipconfigUDP_PASS_ZERO_CHECKSUM_PACKETS == 0 ) */
/* to avoid warning unused parameters */
( void ) uxHeaderLength;
}
#endif /* ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 0 */
return eReturn;
}
/*-----------------------------------------------------------*/
/**
* @brief Process an IP-packet.
*
* @param[in] pxIPPacket: The IP packet to be processed.
* @param[in] pxNetworkBuffer: The networkbuffer descriptor having the IP packet.
*
* @return An enum to show whether the packet should be released/kept/processed etc.
*/
static eFrameProcessingResult_t prvProcessIPPacket( IPPacket_t * pxIPPacket,
NetworkBufferDescriptor_t * const pxNetworkBuffer )
{
eFrameProcessingResult_t eReturn;
IPHeader_t * pxIPHeader = &( pxIPPacket->xIPHeader );
size_t uxLength = ( size_t ) pxIPHeader->ucVersionHeaderLength;
UBaseType_t uxHeaderLength = ( UBaseType_t ) ( ( uxLength & 0x0FU ) << 2 );
uint8_t ucProtocol;
/* Bound the calculated header length: take away the Ethernet header size,
* then check if the IP header is claiming to be longer than the remaining
* total packet size. Also check for minimal header field length. */
if( ( uxHeaderLength > ( pxNetworkBuffer->xDataLength - ipSIZE_OF_ETH_HEADER ) ) ||
( uxHeaderLength < ipSIZE_OF_IPv4_HEADER ) )
{
eReturn = eReleaseBuffer;
}
else
{
ucProtocol = pxIPPacket->xIPHeader.ucProtocol;
/* Check if the IP headers are acceptable and if it has our destination. */
eReturn = prvAllowIPPacket( pxIPPacket, pxNetworkBuffer, uxHeaderLength );
if( eReturn == eProcessBuffer )
{
/* Are there IP-options. */
if( uxHeaderLength > ipSIZE_OF_IPv4_HEADER )
{
/* The size of the IP-header is larger than 20 bytes.
* The extra space is used for IP-options. */
#if ( ipconfigIP_PASS_PACKETS_WITH_IP_OPTIONS != 0 )
{
/* All structs of headers expect a IP header size of 20 bytes
* IP header options were included, we'll ignore them and cut them out. */
const size_t optlen = ( ( size_t ) uxHeaderLength ) - ipSIZE_OF_IPv4_HEADER;
/* From: the previous start of UDP/ICMP/TCP data. */
const uint8_t * pucSource = ( const uint8_t * ) &( pxNetworkBuffer->pucEthernetBuffer[ sizeof( EthernetHeader_t ) + uxHeaderLength ] );
/* To: the usual start of UDP/ICMP/TCP data at offset 20 (decimal ) from IP header. */
uint8_t * pucTarget = ( uint8_t * ) &( pxNetworkBuffer->pucEthernetBuffer[ sizeof( EthernetHeader_t ) + ipSIZE_OF_IPv4_HEADER ] );
/* How many: total length minus the options and the lower headers. */
const size_t xMoveLen = pxNetworkBuffer->xDataLength - ( optlen + ipSIZE_OF_IPv4_HEADER + ipSIZE_OF_ETH_HEADER );
( void ) memmove( pucTarget, pucSource, xMoveLen );
pxNetworkBuffer->xDataLength -= optlen;
pxIPHeader->usLength = FreeRTOS_htons( FreeRTOS_ntohs( pxIPHeader->usLength ) - optlen );
/* Rewrite the Version/IHL byte to indicate that this packet has no IP options. */
pxIPHeader->ucVersionHeaderLength = ( pxIPHeader->ucVersionHeaderLength & 0xF0U ) | /* High nibble is the version. */
( ( ipSIZE_OF_IPv4_HEADER >> 2 ) & 0x0FU );
}
#else /* if ( ipconfigIP_PASS_PACKETS_WITH_IP_OPTIONS != 0 ) */
{
/* 'ipconfigIP_PASS_PACKETS_WITH_IP_OPTIONS' is not set, so packets carrying
* IP-options will be dropped. */
eReturn = eReleaseBuffer;
}
#endif /* if ( ipconfigIP_PASS_PACKETS_WITH_IP_OPTIONS != 0 ) */
}
/* false positive as the value might be changed according to the
* conditionally compiled code */
/* coverity[misra_c_2012_rule_14_3_violation] */
if( eReturn != eReleaseBuffer )
{
/* Add the IP and MAC addresses to the ARP table if they are not
* already there - otherwise refresh the age of the existing
* entry. */
if( ucProtocol != ( uint8_t ) ipPROTOCOL_UDP )
{
if( xCheckRequiresARPResolution( pxNetworkBuffer ) == pdTRUE )
{
eReturn = eWaitingARPResolution;
}
else
{
/* IP address is not on the same subnet, ARP table can be updated.
* Refresh the ARP cache with the IP/MAC-address of the received
* packet. For UDP packets, this will be done later in
* xProcessReceivedUDPPacket(), as soon as it's know that the message
* will be handled. This will prevent the ARP cache getting
* overwritten with the IP address of useless broadcast packets.
*/
vARPRefreshCacheEntry( &( pxIPPacket->xEthernetHeader.xSourceAddress ), pxIPHeader->ulSourceIPAddress );
}
}
if( eReturn != eWaitingARPResolution )
{
switch( ucProtocol )
{
case ipPROTOCOL_ICMP:
/* The IP packet contained an ICMP frame. Don't bother checking
* the ICMP checksum, as if it is wrong then the wrong data will
* also be returned, and the source of the ping will know something
* went wrong because it will not be able to validate what it
* receives. */
#if ( ipconfigREPLY_TO_INCOMING_PINGS == 1 ) || ( ipconfigSUPPORT_OUTGOING_PINGS == 1 )
{
if( pxIPHeader->ulDestinationIPAddress == *ipLOCAL_IP_ADDRESS_POINTER )
{
eReturn = ProcessICMPPacket( pxNetworkBuffer );
}
}
#endif /* ( ipconfigREPLY_TO_INCOMING_PINGS == 1 ) || ( ipconfigSUPPORT_OUTGOING_PINGS == 1 ) */
break;
case ipPROTOCOL_UDP:
{
/* The IP packet contained a UDP frame. */
/* Map the buffer onto a UDP-Packet struct to easily access the
* fields of UDP packet. */
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
const UDPPacket_t * pxUDPPacket = ( ( const UDPPacket_t * ) pxNetworkBuffer->pucEthernetBuffer );
uint16_t usLength;
BaseType_t xIsWaitingARPResolution = pdFALSE;
/* Note the header values required prior to the checksum
* generation as the checksum pseudo header may clobber some of
* these values. */
usLength = FreeRTOS_ntohs( pxUDPPacket->xUDPHeader.usLength );
if( ( pxNetworkBuffer->xDataLength < sizeof( UDPPacket_t ) ) ||
( ( ( size_t ) usLength ) < sizeof( UDPHeader_t ) ) )
{
eReturn = eReleaseBuffer;
}
else if( usLength > ( FreeRTOS_ntohs( pxIPHeader->usLength ) - ipSIZE_OF_IPv4_HEADER ) )
{
/* The UDP packet is bigger than the IP-payload. Something is wrong, drop the packet. */
eReturn = eReleaseBuffer;
}
else
{
size_t uxPayloadSize_1, uxPayloadSize_2;
/* Ensure that downstream UDP packet handling has the lesser
* of: the actual network buffer Ethernet frame length, or
* the sender's UDP packet header payload length, minus the
* size of the UDP header.
*
* The size of the UDP packet structure in this implementation
* includes the size of the Ethernet header, the size of
* the IP header, and the size of the UDP header. */
uxPayloadSize_1 = pxNetworkBuffer->xDataLength - sizeof( UDPPacket_t );
uxPayloadSize_2 = ( ( size_t ) usLength ) - sizeof( UDPHeader_t );
if( uxPayloadSize_1 > uxPayloadSize_2 )
{
pxNetworkBuffer->xDataLength = uxPayloadSize_2 + sizeof( UDPPacket_t );
}
/* Fields in pxNetworkBuffer (usPort, ulIPAddress) are network order. */
pxNetworkBuffer->usPort = pxUDPPacket->xUDPHeader.usSourcePort;
pxNetworkBuffer->ulIPAddress = pxUDPPacket->xIPHeader.ulSourceIPAddress;
/* ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM:
* In some cases, the upper-layer checksum has been calculated
* by the NIC driver. */
/* Pass the packet payload to the UDP sockets
* implementation. */
if( xProcessReceivedUDPPacket( pxNetworkBuffer,
pxUDPPacket->xUDPHeader.usDestinationPort,
&( xIsWaitingARPResolution ) ) == pdPASS )
{
eReturn = eFrameConsumed;
}
else
{
/* Is this packet to be set aside for ARP resolution. */
if( xIsWaitingARPResolution == pdTRUE )
{
eReturn = eWaitingARPResolution;
}
}
}
}
break;
#if ipconfigUSE_TCP == 1
case ipPROTOCOL_TCP:
if( xProcessReceivedTCPPacket( pxNetworkBuffer ) == pdPASS )
{
eReturn = eFrameConsumed;
}
/* Setting this variable will cause xTCPTimerCheck()
* to be called just before the IP-task blocks. */
xProcessedTCPMessage++;
break;
#endif /* if ipconfigUSE_TCP == 1 */
default:
/* Not a supported frame type. */
eReturn = eReleaseBuffer;
break;
}
}
}
}
}
return eReturn;
}
/*-----------------------------------------------------------*/
#if ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 1 )
/**
* @brief Although the driver will take care of checksum calculations, the IP-task
* will still check if the length fields are OK.
*
* @param[in] pucEthernetBuffer: The Ethernet packet received.
* @param[in] uxBufferLength: The total number of bytes received.
*
* @return pdPASS when the length fields in the packet OK, pdFAIL when the packet
* should be dropped.
*/
static BaseType_t xCheckSizeFields( const uint8_t * const pucEthernetBuffer,
size_t uxBufferLength )
{
size_t uxLength;
const IPPacket_t * pxIPPacket;
UBaseType_t uxIPHeaderLength;
uint8_t ucProtocol;
uint16_t usLength;
uint16_t ucVersionHeaderLength;
size_t uxMinimumLength;
BaseType_t xResult = pdFAIL;
DEBUG_DECLARE_TRACE_VARIABLE( BaseType_t, xLocation, 0 );
do
{
/* Check for minimum packet size: Ethernet header and an IP-header, 34 bytes */
if( uxBufferLength < sizeof( IPPacket_t ) )
{
DEBUG_SET_TRACE_VARIABLE( xLocation, 1 );
break;
}
/* Map the buffer onto a IP-Packet struct to easily access the
* fields of the IP packet. */
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
pxIPPacket = ( ( const IPPacket_t * ) pucEthernetBuffer );
ucVersionHeaderLength = pxIPPacket->xIPHeader.ucVersionHeaderLength;
/* Test if the length of the IP-header is between 20 and 60 bytes,
* and if the IP-version is 4. */
if( ( ucVersionHeaderLength < ipIPV4_VERSION_HEADER_LENGTH_MIN ) ||
( ucVersionHeaderLength > ipIPV4_VERSION_HEADER_LENGTH_MAX ) )
{
DEBUG_SET_TRACE_VARIABLE( xLocation, 2 );
break;
}
ucVersionHeaderLength = ( ucVersionHeaderLength & ( uint8_t ) 0x0FU ) << 2;
uxIPHeaderLength = ( UBaseType_t ) ucVersionHeaderLength;
/* Check if the complete IP-header is transferred. */
if( uxBufferLength < ( ipSIZE_OF_ETH_HEADER + uxIPHeaderLength ) )
{
DEBUG_SET_TRACE_VARIABLE( xLocation, 3 );
break;
}
/* Check if the complete IP-header plus protocol data have been transferred: */
usLength = pxIPPacket->xIPHeader.usLength;
usLength = FreeRTOS_ntohs( usLength );
if( uxBufferLength < ( size_t ) ( ipSIZE_OF_ETH_HEADER + ( size_t ) usLength ) )
{
DEBUG_SET_TRACE_VARIABLE( xLocation, 4 );
break;
}
/* Identify the next protocol. */
ucProtocol = pxIPPacket->xIPHeader.ucProtocol;
/* Switch on the Layer 3/4 protocol. */
if( ucProtocol == ( uint8_t ) ipPROTOCOL_UDP )
{
/* Expect at least a complete UDP header. */
uxMinimumLength = uxIPHeaderLength + ipSIZE_OF_ETH_HEADER + ipSIZE_OF_UDP_HEADER;
}
else if( ucProtocol == ( uint8_t ) ipPROTOCOL_TCP )
{
uxMinimumLength = uxIPHeaderLength + ipSIZE_OF_ETH_HEADER + ipSIZE_OF_TCP_HEADER;
}
else if( ( ucProtocol == ( uint8_t ) ipPROTOCOL_ICMP ) ||
( ucProtocol == ( uint8_t ) ipPROTOCOL_IGMP ) )
{
uxMinimumLength = uxIPHeaderLength + ipSIZE_OF_ETH_HEADER + ipSIZE_OF_ICMP_HEADER;
}
else
{
/* Unhandled protocol, other than ICMP, IGMP, UDP, or TCP. */
DEBUG_SET_TRACE_VARIABLE( xLocation, 5 );
break;
}
if( uxBufferLength < uxMinimumLength )
{
DEBUG_SET_TRACE_VARIABLE( xLocation, 6 );
break;
}
uxLength = ( size_t ) usLength;
uxLength -= ( ( uint16_t ) uxIPHeaderLength ); /* normally, minus 20. */
if( ( uxLength < ( ( size_t ) sizeof( UDPHeader_t ) ) ) ||
( uxLength > ( ( size_t ) ipconfigNETWORK_MTU - ( size_t ) uxIPHeaderLength ) ) )
{
/* For incoming packets, the length is out of bound: either
* too short or too long. For outgoing packets, there is a
* serious problem with the format/length. */
DEBUG_SET_TRACE_VARIABLE( xLocation, 7 );
break;
}
xResult = pdPASS;
} while( ipFALSE_BOOL );
if( xResult != pdPASS )
{
/* NOP if ipconfigHAS_PRINTF != 1 */
FreeRTOS_printf( ( "xCheckSizeFields: location %ld\n", xLocation ) );
}
return xResult;
}
#endif /* ( ipconfigDRIVER_INCLUDED_RX_IP_CHECKSUM == 1 ) */
/*-----------------------------------------------------------*/
/* This function is used in other files, has external linkage e.g. in
* FreeRTOS_DNS.c. Not to be made static. */
/**
* @brief Send the Ethernet frame after checking for some conditions.
*
* @param[in,out] pxNetworkBuffer: The network buffer which is to be sent.
* @param[in] xReleaseAfterSend: Whether this network buffer is to be released or not.
*/
void vReturnEthernetFrame( NetworkBufferDescriptor_t * pxNetworkBuffer,
BaseType_t xReleaseAfterSend )
{
EthernetHeader_t * pxEthernetHeader;
/* memcpy() helper variables for MISRA Rule 21.15 compliance*/
const void * pvCopySource;
void * pvCopyDest;
#if ( ipconfigZERO_COPY_TX_DRIVER != 0 )
NetworkBufferDescriptor_t * pxNewBuffer;
#endif
#if ( ipconfigETHERNET_MINIMUM_PACKET_BYTES > 0 )
{
if( pxNetworkBuffer->xDataLength < ( size_t ) ipconfigETHERNET_MINIMUM_PACKET_BYTES )
{
BaseType_t xIndex;
FreeRTOS_printf( ( "vReturnEthernetFrame: length %u\n", ( unsigned ) pxNetworkBuffer->xDataLength ) );
for( xIndex = ( BaseType_t ) pxNetworkBuffer->xDataLength; xIndex < ( BaseType_t ) ipconfigETHERNET_MINIMUM_PACKET_BYTES; xIndex++ )
{
pxNetworkBuffer->pucEthernetBuffer[ xIndex ] = 0U;
}
pxNetworkBuffer->xDataLength = ( size_t ) ipconfigETHERNET_MINIMUM_PACKET_BYTES;
}
}
#endif /* if( ipconfigETHERNET_MINIMUM_PACKET_BYTES > 0 ) */
#if ( ipconfigZERO_COPY_TX_DRIVER != 0 )
if( xReleaseAfterSend == pdFALSE )
{
pxNewBuffer = pxDuplicateNetworkBufferWithDescriptor( pxNetworkBuffer, pxNetworkBuffer->xDataLength );
if( pxNewBuffer != NULL )
{
xReleaseAfterSend = pdTRUE;
/* Want no rounding up. */
pxNewBuffer->xDataLength = pxNetworkBuffer->xDataLength;
}
pxNetworkBuffer = pxNewBuffer;
}
if( pxNetworkBuffer != NULL )
#endif /* if ( ipconfigZERO_COPY_TX_DRIVER != 0 ) */
{
/* Map the Buffer to Ethernet Header struct for easy access to fields. */
/* MISRA C-2012 Rule 11.3 warns about casting pointer type to a different data type.
* The struct to be casted to is defined as a packed struct. The cast won't cause misalignment. */
/* coverity[misra_c_2012_rule_11_3_violation] */
pxEthernetHeader = ( ( EthernetHeader_t * ) pxNetworkBuffer->pucEthernetBuffer );
/*
* Use helper variables for memcpy() to remain
* compliant with MISRA Rule 21.15. These should be
* optimized away.
*/
/* Swap source and destination MAC addresses. */
pvCopySource = &pxEthernetHeader->xSourceAddress;
pvCopyDest = &pxEthernetHeader->xDestinationAddress;
( void ) memcpy( pvCopyDest, pvCopySource, sizeof( pxEthernetHeader->xDestinationAddress ) );
pvCopySource = ipLOCAL_MAC_ADDRESS;
pvCopyDest = &pxEthernetHeader->xSourceAddress;
( void ) memcpy( pvCopyDest, pvCopySource, ( size_t ) ipMAC_ADDRESS_LENGTH_BYTES );
/* Send! */
iptraceNETWORK_INTERFACE_OUTPUT( pxNetworkBuffer->xDataLength, pxNetworkBuffer->pucEthernetBuffer );
( void ) xNetworkInterfaceOutput( pxNetworkBuffer, xReleaseAfterSend );
}
}
/*-----------------------------------------------------------*/
/**
* @brief Returns the IP address of the NIC.
*
* @return The IP address of the NIC.
*/
uint32_t FreeRTOS_GetIPAddress( void )
{
return *ipLOCAL_IP_ADDRESS_POINTER;
}
/*-----------------------------------------------------------*/
/**
* @brief Sets the IP address of the NIC.
*
* @param[in] ulIPAddress: IP address of the NIC to be set.
*/
void FreeRTOS_SetIPAddress( uint32_t ulIPAddress )
{
*ipLOCAL_IP_ADDRESS_POINTER = ulIPAddress;
}
/*-----------------------------------------------------------*/
/**
* @brief Get the gateway address of the subnet.
*
* @return The IP-address of the gateway, zero if a gateway is
* not used/defined.
*/
uint32_t FreeRTOS_GetGatewayAddress( void )
{
return xNetworkAddressing.ulGatewayAddress;
}
/*-----------------------------------------------------------*/
/**
* @brief Get the DNS server address.
*
* @return The IP address of the DNS server.
*/
uint32_t FreeRTOS_GetDNSServerAddress( void )
{
return xNetworkAddressing.ulDNSServerAddress;
}
/*-----------------------------------------------------------*/
/**
* @brief Get the netmask for the subnet.
*
* @return The 32 bit netmask for the subnet.
*/
uint32_t FreeRTOS_GetNetmask( void )
{
return xNetworkAddressing.ulNetMask;
}
/*-----------------------------------------------------------*/
/**
* @brief Update the MAC address.
*
* @param[in] ucMACAddress: the MAC address to be set.
*/
void FreeRTOS_UpdateMACAddress( const uint8_t ucMACAddress[ ipMAC_ADDRESS_LENGTH_BYTES ] )
{
/* Copy the MAC address at the start of the default packet header fragment. */
( void ) memcpy( ipLOCAL_MAC_ADDRESS, ucMACAddress, ( size_t ) ipMAC_ADDRESS_LENGTH_BYTES );
}
/*-----------------------------------------------------------*/
/**
* @brief Get the MAC address.
*
* @return The pointer to MAC address.
*/
const uint8_t * FreeRTOS_GetMACAddress( void )
{
return ipLOCAL_MAC_ADDRESS;
}
/*-----------------------------------------------------------*/
/**
* @brief Set the netmask for the subnet.
*
* @param[in] ulNetmask: The 32 bit netmask of the subnet.
*/
void FreeRTOS_SetNetmask( uint32_t ulNetmask )
{
xNetworkAddressing.ulNetMask = ulNetmask;
}
/*-----------------------------------------------------------*/
/**
* @brief Set the gateway address.
*
* @param[in] ulGatewayAddress: The gateway address.
*/
void FreeRTOS_SetGatewayAddress( uint32_t ulGatewayAddress )
{
xNetworkAddressing.ulGatewayAddress = ulGatewayAddress;
}
/*-----------------------------------------------------------*/
/**
* @brief Returns whether the IP task is ready.
*
* @return pdTRUE if IP task is ready, else pdFALSE.
*/
BaseType_t xIPIsNetworkTaskReady( void )
{
return xIPTaskInitialised;
}
/*-----------------------------------------------------------*/
/**
* @brief Returns whether this node is connected to network or not.
*
* @return pdTRUE if network is connected, else pdFALSE.
*/
BaseType_t FreeRTOS_IsNetworkUp( void )
{
return xNetworkUp;
}
/*-----------------------------------------------------------*/
#if ( ipconfigCHECK_IP_QUEUE_SPACE != 0 )
/**
* @brief Get the minimum space in the IP task queue.
*
* @return The minimum possible space in the IP task queue.
*/
UBaseType_t uxGetMinimumIPQueueSpace( void )
{
return uxQueueMinimumSpace;
}
#endif
/*-----------------------------------------------------------*/
/* Provide access to private members for verification. */
#ifdef FREERTOS_TCP_ENABLE_VERIFICATION
#include "aws_freertos_ip_verification_access_ip_define.h"
#endif