Improve timer accuracy and realize (#6926)

* add cputimer frame

* add cputime sleep

* ctime use cputime

* Processing cputime has no timeout function

* Migration cputime Code

* formatting file

* 整理代码

* add document copyright information

* 改 cputime_timer 为 cputimer

* 简化 _cputimer_list 初始化

* rt_cputimer_create -> rt_cputimer_init

* Remove RT_USING_CPUTIME and code cleanup.

* Remove RT_USING_CPUTIME in cputimer.c
* Set set_next_timeout as static function.

---------

Co-authored-by: Bernard Xiong <bernard.xiong@gmail.com>
This commit is contained in:
zhkag
2023-02-15 20:46:22 +08:00
committed by GitHub
parent ad79e29474
commit 0f85648cfb
6 changed files with 607 additions and 81 deletions

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2006-2022, RT-Thread Development Team
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
@@ -32,7 +32,7 @@
#ifdef RT_USING_POSIX_DELAY
#include <delay.h>
#endif
#ifdef RT_USING_RTC
#if defined( RT_USING_RTC ) || defined( RT_USING_CPUTIME)
#include <rtdevice.h>
#endif
@@ -535,28 +535,22 @@ int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
return -1;
}
#ifdef RT_USING_CPUTIME
uint64_t cpu_tick, cpu_tick_old;
cpu_tick_old = clock_cpu_gettime();
rt_tick_t tick;
double unit = clock_cpu_getres();
cpu_tick = (rqtp->tv_sec * NANOSECOND_PER_SECOND + ((uint64_t)rqtp->tv_nsec * NANOSECOND_PER_SECOND) / NANOSECOND_PER_SECOND) / unit;
tick = (unit * cpu_tick) / (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
rt_thread_delay(tick);
rt_uint64_t ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec;
rt_uint64_t tick = ns / unit;
rt_cputime_sleep(tick);
if (rt_get_errno() == -RT_EINTR)
{
if (rmtp)
{
uint64_t rmtp_cpu_tick = cpu_tick_old + cpu_tick - clock_cpu_gettime();
uint64_t rmtp_cpu_tick = tick - clock_cpu_gettime();
rmtp->tv_sec = ((time_t)(rmtp_cpu_tick * unit)) / NANOSECOND_PER_SECOND;
rmtp->tv_nsec = ((long)(rmtp_cpu_tick * unit)) % NANOSECOND_PER_SECOND;
}
rt_set_errno(EINTR);
return -1;
}
else
while (clock_cpu_gettime() - cpu_tick_old < cpu_tick);
#else
rt_tick_t tick, tick_old = rt_tick_get();
tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)rqtp->tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
@@ -761,30 +755,25 @@ int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *rqtp, s
case CLOCK_MONOTONIC:
case CLOCK_CPUTIME_ID:
{
uint64_t cpu_tick, cpu_tick_old;
cpu_tick_old = clock_cpu_gettime();
rt_tick_t tick;
rt_uint64_t cpu_tick_old = clock_cpu_gettime();
double unit = clock_cpu_getres();
cpu_tick = (rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec * (NANOSECOND_PER_SECOND / NANOSECOND_PER_SECOND)) / unit;
rt_uint64_t ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec;
rt_uint64_t tick = ns / unit;
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
cpu_tick = cpu_tick < cpu_tick_old ? 0 : cpu_tick - cpu_tick_old;
tick = (unit * cpu_tick) / (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
rt_thread_delay(tick);
tick -= cpu_tick_old;
rt_cputime_sleep(tick);
if (rt_get_errno() == -RT_EINTR)
{
if (rmtp)
{
uint64_t rmtp_cpu_tick = cpu_tick_old + cpu_tick - clock_cpu_gettime();
uint64_t rmtp_cpu_tick = tick - clock_cpu_gettime();
rmtp->tv_sec = ((time_t)(rmtp_cpu_tick * unit)) / NANOSECOND_PER_SECOND;
rmtp->tv_nsec = ((long)(rmtp_cpu_tick * unit)) % NANOSECOND_PER_SECOND;
}
rt_set_errno(EINTR);
return -1;
}
else
while (clock_cpu_gettime() - cpu_tick_old < cpu_tick);
}
break;
#endif
@@ -882,14 +871,21 @@ RTM_EXPORT(rt_timespec_to_tick);
struct timer_obj
{
struct rt_timer timer;
union
{
struct rt_timer timer;
#ifdef RT_USING_CPUTIME
struct rt_cputimer cputimer;
#endif
};
void (*sigev_notify_function)(union sigval val);
union sigval val;
struct timespec interval; /* Reload value */
struct timespec value; /* Reload value */
rt_uint32_t reload; /* Reload value in ms */
rt_uint64_t reload; /* Reload value in ms */
rt_uint32_t status;
int sigev_signo;
clockid_t clockid;
#ifdef RT_USING_SMART
pid_t pid;
#endif
@@ -906,9 +902,20 @@ static void rtthread_timer_wrapper(void *timerobj)
timer->status = NOT_ACTIVE;
}
timer->reload = (timer->interval.tv_sec * RT_TICK_PER_SECOND) + (timer->interval.tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
if (timer->reload)
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
timer->reload = (timer->interval.tv_sec * NANOSECOND_PER_SECOND + timer->interval.tv_nsec) / clock_cpu_getres();
if (timer->reload)
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
}
else
#endif /* RT_USING_CPUTIME */
{
timer->reload = (timer->interval.tv_sec * RT_TICK_PER_SECOND) + (timer->interval.tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
if (timer->reload)
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
}
#ifdef RT_USING_SMART
sys_kill(timer->pid, timer->sigev_signo);
@@ -1024,14 +1031,20 @@ int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid)
timer->interval.tv_nsec = 0;
timer->reload = 0U;
timer->status = NOT_ACTIVE;
timer->clockid = clockid;
if (evp->sigev_notify == SIGEV_NONE)
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
rt_timer_init(&timer->timer, timername, RT_NULL, RT_NULL, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
rt_cputimer_init(&timer->cputimer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
}
else
#endif /* RT_USING_CPUTIME */
{
rt_timer_init(&timer->timer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
if (evp->sigev_notify == SIGEV_NONE)
rt_timer_init(&timer->timer, timername, RT_NULL, RT_NULL, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
else
rt_timer_init(&timer->timer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
}
timer_id_lock();
@@ -1069,19 +1082,32 @@ int timer_delete(timer_t timerid)
timer = _g_timerid[(rt_ubase_t)timerid];
timer_id_put((rt_ubase_t)timerid);
timer_id_unlock();
if (timer == RT_NULL || rt_object_get_type(&timer->timer.parent) != RT_Object_Class_Timer)
if (timer == RT_NULL)
{
rt_set_errno(EINVAL);
return -1;
}
if (timer->status == ACTIVE)
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
timer->status = NOT_ACTIVE;
rt_timer_stop(&timer->timer);
if (timer->status == ACTIVE)
{
timer->status = NOT_ACTIVE;
rt_cputimer_stop(&timer->cputimer);
}
rt_cputimer_detach(&timer->cputimer);
}
else
#endif /* RT_USING_CPUTIME */
{
if (timer->status == ACTIVE)
{
timer->status = NOT_ACTIVE;
rt_timer_stop(&timer->timer);
}
rt_timer_detach(&timer->timer);
}
rt_timer_detach(&timer->timer);
rt_free(timer);
return 0;
@@ -1107,10 +1133,9 @@ int timer_getoverrun(timer_t timerid)
int timer_gettime(timer_t timerid, struct itimerspec *its)
{
struct timer_obj *timer = timer_id_get((rt_ubase_t)timerid);
rt_tick_t remaining;
rt_uint32_t seconds, nanoseconds;
if (timer == NULL || rt_object_get_type(&timer->timer.parent) != RT_Object_Class_Timer)
if (timer == NULL)
{
rt_set_errno(EINVAL);
return -1;
@@ -1124,31 +1149,45 @@ int timer_gettime(timer_t timerid, struct itimerspec *its)
if (timer->status == ACTIVE)
{
rt_tick_t remain_tick;
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
rt_uint64_t remain_tick;
rt_uint64_t remaining;
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick);
remaining = (remain_tick - clock_cpu_gettime()) / clock_cpu_getres();
seconds = remaining / NANOSECOND_PER_SECOND;
nanoseconds = remaining % NANOSECOND_PER_SECOND;
}
else
#endif /* RT_USING_CPUTIME */
{
rt_tick_t remain_tick;
rt_tick_t remaining;
rt_timer_control(&timer->timer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick);
rt_timer_control(&timer->timer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick);
/* 'remain_tick' is minimum-unit in the RT-Thread' timer,
* so the seconds, nanoseconds will be calculated by 'remain_tick'.
*/
remaining = remain_tick - rt_tick_get();
/* 'remain_tick' is minimum-unit in the RT-Thread' timer,
* so the seconds, nanoseconds will be calculated by 'remain_tick'.
*/
remaining = remain_tick - rt_tick_get();
/* calculate 'second' */
seconds = remaining / RT_TICK_PER_SECOND;
/* calculate 'nanosecond'; To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on.
*
* remain_tick millisecond remain_tick * MILLISECOND_PER_SECOND
* ------------------------- = -------------------------- ---> millisecond = -------------------------------------------
* RT_TICK_PER_SECOND MILLISECOND_PER_SECOND RT_TICK_PER_SECOND
*
* remain_tick * MILLISECOND_PER_SECOND remain_tick * MILLISECOND_PER_SECOND * MICROSECOND_PER_SECOND
* millisecond = ---------------------------------------- ---> nanosecond = -------------------------------------------------------------------
* RT_TICK_PER_SECOND RT_TICK_PER_SECOND
*
*/
nanoseconds = (((remaining % RT_TICK_PER_SECOND) * MILLISECOND_PER_SECOND) * MICROSECOND_PER_SECOND) / RT_TICK_PER_SECOND ;
/* calculate 'second' */
seconds = remaining / RT_TICK_PER_SECOND;
/* calculate 'nanosecond'; To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on.
*
* remain_tick millisecond remain_tick * MILLISECOND_PER_SECOND
* ------------------------- = -------------------------- ---> millisecond = -------------------------------------------
* RT_TICK_PER_SECOND MILLISECOND_PER_SECOND RT_TICK_PER_SECOND
*
* remain_tick * MILLISECOND_PER_SECOND remain_tick * MILLISECOND_PER_SECOND * MICROSECOND_PER_SECOND
* millisecond = ---------------------------------------- ---> nanosecond = -------------------------------------------------------------------
* RT_TICK_PER_SECOND RT_TICK_PER_SECOND
*
*/
nanoseconds = (((remaining % RT_TICK_PER_SECOND) * MILLISECOND_PER_SECOND) * MICROSECOND_PER_SECOND) / RT_TICK_PER_SECOND;
}
its->it_value.tv_sec = (rt_int32_t)seconds;
its->it_value.tv_nsec = (rt_int32_t)nanoseconds;
}
@@ -1175,7 +1214,6 @@ int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
{
struct timer_obj *timer = timer_id_get((rt_ubase_t)timerid);
if (timer == NULL ||
rt_object_get_type(&timer->timer.parent) != RT_Object_Class_Timer ||
value->it_interval.tv_nsec < 0 ||
value->it_interval.tv_nsec >= NANOSECOND_PER_SECOND ||
value->it_interval.tv_sec < 0 ||
@@ -1198,7 +1236,12 @@ int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
{
if (timer->status == ACTIVE)
{
rt_timer_stop(&timer->timer);
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
rt_cputimer_stop(&timer->cputimer);
else
#endif /* RT_USING_CPUTIME */
rt_timer_stop(&timer->timer);
}
timer->status = NOT_ACTIVE;
@@ -1212,21 +1255,39 @@ int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
* RT_TICK_PER_SECOND NANOSECOND_PER_SECOND NANOSECOND_PER_SECOND
*
*/
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
rt_int64_t ts = ((value->it_value.tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND);
rt_int64_t tns = (value->it_value.tv_nsec - _timevalue.tv_usec * 1000) * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
rt_int64_t reload = ts + tns;
rt_tick_t rt_tick = rt_tick_get();
timer->reload = reload < rt_tick ? 0 : reload - rt_tick;
#endif
rt_uint64_t tick;
double unit = clock_cpu_getres();
tick = (value->it_value.tv_sec * NANOSECOND_PER_SECOND + value->it_value.tv_nsec) / unit;
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
{
tick -= clock_cpu_gettime();
}
timer->reload = tick;
}
else
timer->reload = (value->it_value.tv_sec * RT_TICK_PER_SECOND) + value->it_value.tv_nsec * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
#endif /* RT_USING_CPUTIME */
{
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
rt_int64_t ts = ((value->it_value.tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND);
rt_int64_t tns = (value->it_value.tv_nsec - _timevalue.tv_usec * 1000) * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
rt_int64_t reload = ts + tns;
rt_tick_t rt_tick = rt_tick_get();
timer->reload = reload < rt_tick ? 0 : reload - rt_tick;
#endif
}
else
timer->reload = (value->it_value.tv_sec * RT_TICK_PER_SECOND) + value->it_value.tv_nsec * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
}
timer->interval.tv_sec = value->it_interval.tv_sec;
timer->interval.tv_nsec = value->it_interval.tv_nsec;
timer->value.tv_sec = value->it_value.tv_sec;
@@ -1234,18 +1295,38 @@ int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
if (timer->status == ACTIVE)
{
rt_timer_stop(&timer->timer);
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
rt_cputimer_stop(&timer->cputimer);
else
#endif /* RT_USING_CPUTIME */
rt_timer_stop(&timer->timer);
}
timer->status = ACTIVE;
if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0))
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL);
else
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL);
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0))
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL);
else
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL);
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
rt_timer_start(&timer->timer);
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
rt_cputimer_start(&timer->cputimer);
}
else
#endif /* RT_USING_CPUTIME */
{
if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0))
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL);
else
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL);
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
rt_timer_start(&timer->timer);
}
return 0;
}