Files
2025-09-01 18:44:24 +08:00

759 lines
22 KiB
C

/*
* Copyright (c) 2006-2025 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-01-30 lizhirui first version
* 2022-12-13 WangXiaoyao Port to new mm
* 2023-10-12 Shell Add permission control API
*/
#include <rtthread.h>
#include <stddef.h>
#include <stdint.h>
#define DBG_TAG "hw.mmu"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include <board.h>
#include <cache.h>
#include <mm_aspace.h>
#include <mm_page.h>
#include <mmu.h>
#include <riscv_mmu.h>
#include <tlb.h>
#ifdef RT_USING_SMART
#include <board.h>
#include <ioremap.h>
#include <lwp_user_mm.h>
#endif
#ifndef RT_USING_SMART
#define USER_VADDR_START 0
#endif
static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr);
static void *current_mmu_table = RT_NULL;
volatile __attribute__((aligned(4 * 1024)))
rt_ubase_t MMUTable[__SIZE(VPN2_BIT)];
/**
* @brief Switch the current address space to the specified one.
*
* This function is responsible for switching the address space by updating the page table
* and related hardware state. The behavior depends on whether the architecture supports
* Address Space Identifiers (ASIDs), devided by macro definition of ARCH_USING_ASID.
*
* @param aspace Pointer to the address space structure containing the new page table.
*
* @note If ASID is supported (`ARCH_USING_ASID` is defined), the function will call
* `rt_hw_asid_switch_pgtbl` to switch the page table and update the ASID.
* Otherwise, it will directly write the `satp` CSR to switch the page table
* and invalidate the TLB.
*/
#ifdef ARCH_USING_ASID
void rt_hw_aspace_switch(rt_aspace_t aspace)
{
uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
current_mmu_table = aspace->page_table;
rt_hw_asid_switch_pgtbl(aspace, page_table);
}
#else /* !ARCH_USING_ASID */
void rt_hw_aspace_switch(rt_aspace_t aspace)
{
uintptr_t page_table = (uintptr_t)rt_kmem_v2p(aspace->page_table);
current_mmu_table = aspace->page_table;
write_csr(satp, (((size_t)SATP_MODE) << SATP_MODE_OFFSET) |
((rt_ubase_t)page_table >> PAGE_OFFSET_BIT));
rt_hw_tlb_invalidate_all_local();
}
void rt_hw_asid_init(void)
{
}
#endif /* ARCH_USING_ASID */
/* get current page table. */
void *rt_hw_mmu_tbl_get()
{
return current_mmu_table;
}
/* Map a single virtual address page to a physical address page in the page table. */
static int _map_one_page(struct rt_aspace *aspace, void *va, void *pa,
size_t attr)
{
rt_ubase_t l1_off, l2_off, l3_off;
rt_ubase_t *mmu_l1, *mmu_l2, *mmu_l3;
l1_off = GET_L1((size_t)va);
l2_off = GET_L2((size_t)va);
l3_off = GET_L3((size_t)va);
mmu_l1 = ((rt_ubase_t *)aspace->page_table) + l1_off;
if (PTE_USED(*mmu_l1))
{
mmu_l2 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
}
else
{
mmu_l2 = (rt_ubase_t *)rt_pages_alloc(0);
if (mmu_l2)
{
rt_memset(mmu_l2, 0, PAGE_SIZE);
rt_hw_cpu_dcache_clean(mmu_l2, PAGE_SIZE);
*mmu_l1 = COMBINEPTE((rt_ubase_t)VPN_TO_PPN(mmu_l2, PV_OFFSET),
PAGE_DEFAULT_ATTR_NEXT);
rt_hw_cpu_dcache_clean(mmu_l1, sizeof(*mmu_l1));
}
else
{
return -1;
}
}
if (PTE_USED(*(mmu_l2 + l2_off)))
{
RT_ASSERT(!PAGE_IS_LEAF(*(mmu_l2 + l2_off)));
mmu_l3 =
(rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)), PV_OFFSET);
}
else
{
mmu_l3 = (rt_ubase_t *)rt_pages_alloc(0);
if (mmu_l3)
{
rt_memset(mmu_l3, 0, PAGE_SIZE);
rt_hw_cpu_dcache_clean(mmu_l3, PAGE_SIZE);
*(mmu_l2 + l2_off) =
COMBINEPTE((rt_ubase_t)VPN_TO_PPN(mmu_l3, PV_OFFSET),
PAGE_DEFAULT_ATTR_NEXT);
rt_hw_cpu_dcache_clean(mmu_l2, sizeof(*mmu_l2));
/* declares a reference to parent page table */
rt_page_ref_inc((void *)mmu_l2, 0);
}
else
{
return -1;
}
}
RT_ASSERT(!PTE_USED(*(mmu_l3 + l3_off)));
/* declares a reference to parent page table */
rt_page_ref_inc((void *)mmu_l3, 0);
*(mmu_l3 + l3_off) = COMBINEPTE((rt_ubase_t)pa, attr);
rt_hw_cpu_dcache_clean(mmu_l3 + l3_off, sizeof(*(mmu_l3 + l3_off)));
return 0;
}
/**
* @brief Maps a virtual address space to a physical address space.
*
* This function maps a specified range of virtual addresses to a range of physical addresses
* and sets the attributes of the page table entries (PTEs). If an error occurs during the
* mapping process, the function will automatically roll back any partially completed mappings.
*
* @param aspace Pointer to the address space structure containing the page table information.
* @param v_addr The starting virtual address to be mapped.
* @param p_addr The starting physical address to be mapped.
* @param size The size of the memory to be mapped (in bytes).
* @param attr The attributes of the page table entries (e.g., read/write permissions, cache policies).
*
* @return On success, returns the starting virtual address `v_addr`;
* On failure, returns `NULL`.
*
* @note This function will not override existing page table entries.
* @warning The caller must ensure that `v_addr` and `p_addr` are page-aligned,
* and `size` is a multiple of the page size.
*
*/
void *rt_hw_mmu_map(struct rt_aspace *aspace, void *v_addr, void *p_addr,
size_t size, size_t attr)
{
int ret = -1;
void *unmap_va = v_addr;
size_t npages = size >> ARCH_PAGE_SHIFT;
/* TODO trying with HUGEPAGE here */
while (npages--)
{
MM_PGTBL_LOCK(aspace);
ret = _map_one_page(aspace, v_addr, p_addr, attr);
MM_PGTBL_UNLOCK(aspace);
if (ret != 0)
{
/* error, undo map */
while (unmap_va != v_addr)
{
MM_PGTBL_LOCK(aspace);
_unmap_area(aspace, unmap_va);
MM_PGTBL_UNLOCK(aspace);
unmap_va += ARCH_PAGE_SIZE;
}
break;
}
v_addr += ARCH_PAGE_SIZE;
p_addr += ARCH_PAGE_SIZE;
}
if (ret == 0)
{
return unmap_va;
}
return NULL;
}
/* unmap page table entry */
static void _unmap_pte(rt_ubase_t *pentry, rt_ubase_t *lvl_entry[], int level)
{
int loop_flag = 1;
while (loop_flag)
{
loop_flag = 0;
*pentry = 0;
rt_hw_cpu_dcache_clean(pentry, sizeof(*pentry));
/* we don't handle level 0, which is maintained by caller */
if (level > 0)
{
void *page = (void *)((rt_ubase_t)pentry & ~ARCH_PAGE_MASK);
/* decrease reference from child page to parent */
rt_pages_free(page, 0);
int free = rt_page_ref_get(page, 0);
if (free == 1)
{
rt_pages_free(page, 0);
pentry = lvl_entry[--level];
loop_flag = 1;
}
}
}
}
/* Unmaps a virtual address range (1GB/2MB/4KB according to actual page level) from the page table. */
static size_t _unmap_area(struct rt_aspace *aspace, void *v_addr)
{
rt_ubase_t loop_va = __UMASKVALUE((rt_ubase_t)v_addr, PAGE_OFFSET_MASK);
size_t unmapped = 0;
int i = 0;
rt_ubase_t lvl_off[3];
rt_ubase_t *lvl_entry[3];
lvl_off[0] = (rt_ubase_t)GET_L1(loop_va);
lvl_off[1] = (rt_ubase_t)GET_L2(loop_va);
lvl_off[2] = (rt_ubase_t)GET_L3(loop_va);
unmapped = 1 << (ARCH_PAGE_SHIFT + ARCH_INDEX_WIDTH * 2ul);
rt_ubase_t *pentry;
lvl_entry[i] = ((rt_ubase_t *)aspace->page_table + lvl_off[i]);
pentry = lvl_entry[i];
/* check if lvl_entry[0] is valid. if no, return 0 directly. */
if (!PTE_USED(*pentry))
{
return 0;
}
/* find leaf page table entry */
while (PTE_USED(*pentry) && !PAGE_IS_LEAF(*pentry))
{
i += 1;
if (i >= 3)
{
unmapped = 0;
break;
}
lvl_entry[i] = ((rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*pentry), PV_OFFSET) +
lvl_off[i]);
pentry = lvl_entry[i];
unmapped >>= ARCH_INDEX_WIDTH;
}
/* clear PTE & setup its */
if (PTE_USED(*pentry))
{
_unmap_pte(pentry, lvl_entry, i);
}
else
{
unmapped = 0; /* invalid pte, return 0. */
}
return unmapped;
}
/**
* @brief Unmaps a range of virtual memory addresses from the specified address space.
*
* This function is responsible for unmapping a contiguous region of virtual memory
* from the given address space. It handles multiple pages and ensures thread safety
* by locking the page table during the unmapping operation.
*
* @param aspace Pointer to the address space structure from which the memory will be unmapped.
* @param v_addr Starting virtual address to unmap. Must be page-aligned.
* @param size Size of the memory region to unmap. Must be page-aligned.
*
* @note The caller must ensure that both `v_addr` and `size` are page-aligned.
*
* @details The function operates in a loop, unmapping memory in chunks. It uses the
* `_unmap_area` function to perform the actual unmapping, which is called within a
* locked section to ensure thread safety. The loop continues until the entire region
* is unmapped.
*
* @see _unmap_area
* @note unmap is different from map that it can handle multiple pages
*/
void rt_hw_mmu_unmap(struct rt_aspace *aspace, void *v_addr, size_t size)
{
/* caller guarantee that v_addr & size are page aligned */
if (!aspace->page_table)
{
return;
}
size_t unmapped = 0;
while (size > 0)
{
MM_PGTBL_LOCK(aspace);
unmapped = _unmap_area(aspace, v_addr);
MM_PGTBL_UNLOCK(aspace);
/* when unmapped == 0, region not exist in pgtbl */
if (!unmapped || unmapped > size) break;
size -= unmapped;
v_addr += unmapped;
}
}
#ifdef RT_USING_SMART
static inline void _init_region(void *vaddr, size_t size)
{
rt_ioremap_start = vaddr;
rt_ioremap_size = size;
rt_mpr_start = rt_ioremap_start - rt_mpr_size;
LOG_D("rt_ioremap_start: %p, rt_mpr_start: %p", rt_ioremap_start,
rt_mpr_start);
}
#else
static inline void _init_region(void *vaddr, size_t size)
{
rt_mpr_start = vaddr - rt_mpr_size;
}
#endif
#if defined(RT_USING_SMART) && defined(ARCH_REMAP_KERNEL)
#define KERN_SPACE_START ((void *)KERNEL_VADDR_START)
#define KERN_SPACE_SIZE (0xfffffffffffff000UL - KERNEL_VADDR_START + 0x1000)
#else
#define KERN_SPACE_START ((void *)0x1000)
#define KERN_SPACE_SIZE ((size_t)USER_VADDR_START - 0x1000)
#endif
/**
* @brief Initialize the MMU (Memory Management Unit) mapping.
*
* This function initializes the MMU mapping, incluing these steps as follows:
* 1. Check the validity of the input parameters,
* 2. Calculate the start and end virtual addresses based on the input virtual address and size.
* 3. Convert the virtual addresses to PPN2 indices.
* 4. Check the initialization of the page table. If any entry in the page table within
* the specified range is non-zero, it returns -1.
* 5. It initializes the kernel address space using rt_aspace_init() and initializes the specified region
* using _init_region.
*
* @param aspace Pointer to the address space. Must not be NULL.
* @param v_address The starting virtual address.
* @param size The size of the virtual address space.
* @param vtable Pointer to the page table. Must not be NULL.
* @param pv_off The page table offset.
*
* @return Returns 0 if the initialization is successful. Returns -1 if any input parameter is invalid
* or the page table initialization check fails.
*/
int rt_hw_mmu_map_init(rt_aspace_t aspace, void *v_address, rt_ubase_t size,
rt_ubase_t *vtable, rt_ubase_t pv_off)
{
size_t l1_off, va_s, va_e;
if ((!aspace) || (!vtable))
{
return -1;
}
va_s = (rt_ubase_t)v_address;
va_e = ((rt_ubase_t)v_address) + size - 1;
if (va_e < va_s)
{
return -1;
}
/* convert address to PPN2 index */
va_s = GET_L1(va_s);
va_e = GET_L1(va_e);
if (va_s == 0)
{
return -1;
}
/* vtable initialization check */
for (l1_off = va_s; l1_off <= va_e; l1_off++)
{
size_t v = vtable[l1_off];
if (v)
{
return -1;
}
}
rt_aspace_init(&rt_kernel_space, KERN_SPACE_START, KERN_SPACE_SIZE, vtable);
_init_region(v_address, size);
return 0;
}
const static int max_level =
(ARCH_VADDR_WIDTH - ARCH_PAGE_SHIFT) / ARCH_INDEX_WIDTH;
static inline uintptr_t _get_level_size(int level)
{
return 1ul << (ARCH_PAGE_SHIFT + (max_level - level) * ARCH_INDEX_WIDTH);
}
static rt_ubase_t *_query(struct rt_aspace *aspace, void *vaddr, int *level)
{
rt_ubase_t l1_off, l2_off, l3_off;
rt_ubase_t *mmu_l1, *mmu_l2, *mmu_l3;
rt_ubase_t pa;
l1_off = GET_L1((rt_uintptr_t)vaddr);
l2_off = GET_L2((rt_uintptr_t)vaddr);
l3_off = GET_L3((rt_uintptr_t)vaddr);
if (!aspace)
{
LOG_W("%s: no aspace", __func__);
return RT_NULL;
}
mmu_l1 = ((rt_ubase_t *)aspace->page_table) + l1_off;
if (PTE_USED(*mmu_l1))
{
if (*mmu_l1 & PTE_XWR_MASK)
{
*level = 1;
return mmu_l1;
}
mmu_l2 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*mmu_l1), PV_OFFSET);
if (PTE_USED(*(mmu_l2 + l2_off)))
{
if (*(mmu_l2 + l2_off) & PTE_XWR_MASK)
{
*level = 2;
return mmu_l2 + l2_off;
}
mmu_l3 = (rt_ubase_t *)PPN_TO_VPN(GET_PADDR(*(mmu_l2 + l2_off)),
PV_OFFSET);
if (PTE_USED(*(mmu_l3 + l3_off)))
{
*level = 3;
return mmu_l3 + l3_off;
}
}
}
return RT_NULL;
}
/**
* @brief Translate a virtual address to a physical address.
*
* This function translates a given virtual address (`vaddr`) to its corresponding
* physical address (`paddr`) using the page table in the specified address space (`aspace`).
*
* @param aspace Pointer to the address space structure containing the page table.
* @param vaddr The virtual address to be translated.
*
* @return The translated physical address. If the translation fails, `ARCH_MAP_FAILED` is returned.
*
* @note The function queries the page table entry (PTE) for the virtual address using `_query`.
* If a valid PTE is found, the physical address is extracted and combined with the offset
* from the virtual address. If no valid PTE is found, a debug log is recorded, and
* `ARCH_MAP_FAILED` is returned.
*/
void *rt_hw_mmu_v2p(struct rt_aspace *aspace, void *vaddr)
{
int level;
rt_ubase_t *pte = _query(aspace, vaddr, &level);
uintptr_t paddr;
if (pte)
{
paddr = GET_PADDR(*pte);
paddr |= ((intptr_t)vaddr & (_get_level_size(level) - 1));
}
else
{
LOG_D("%s: failed at %p", __func__, vaddr);
paddr = (uintptr_t)ARCH_MAP_FAILED;
}
return (void *)paddr;
}
static int _noncache(rt_ubase_t *pte)
{
return 0;
}
static int _cache(rt_ubase_t *pte)
{
return 0;
}
static int (*control_handler[MMU_CNTL_DUMMY_END])(rt_ubase_t *pte)=
{
[MMU_CNTL_CACHE] = _cache,
[MMU_CNTL_NONCACHE] = _noncache,
};
/**
* @brief Control the page table entries (PTEs) for a specified virtual address range.
*
* This function applies a control command (e.g., cache control) to the page table entries
* (PTEs) corresponding to the specified virtual address range (`vaddr` to `vaddr + size`).
*
* @param aspace Pointer to the address space structure containing the page table.
* @param vaddr The starting virtual address of the range.
* @param size The size of the virtual address range.
* @param cmd The control command to apply (e.g., `MMU_CNTL_CACHE`, `MMU_CNTL_NONCACHE`.etc.).
*
* @return `RT_EOK` on success, or an error code (`-RT_EINVAL` or `-RT_ENOSYS`) on failure.
*
* @note The function uses the `control_handler` array to map the command to a handler function.
* It iterates over the virtual address range, queries the PTEs, and applies the handler
* to each valid PTE. If the command is invalid, `-RT_ENOSYS` is returned.
*/
int rt_hw_mmu_control(struct rt_aspace *aspace, void *vaddr, size_t size,
enum rt_mmu_cntl cmd)
{
int level;
int err = -RT_EINVAL;
void *vend = vaddr + size;
int (*handler)(rt_ubase_t *pte);
if (cmd >= 0 && cmd < MMU_CNTL_DUMMY_END)
{
handler = control_handler[cmd];
while (vaddr < vend)
{
rt_ubase_t *pte = _query(aspace, vaddr, &level);
void *range_end = vaddr + _get_level_size(level);
RT_ASSERT(range_end <= vend);
if (pte)
{
err = handler(pte);
RT_ASSERT(err == RT_EOK);
}
vaddr = range_end;
}
}
else
{
err = -RT_ENOSYS;
}
return err;
}
/**
* @brief setup Page Table for kernel space. It's a fixed map
* and all mappings cannot be changed after initialization.
*
* Memory region in struct mem_desc must be page aligned,
* otherwise is a failure and no report will be
* returned.
*
* @param aspace Pointer to the address space structure.
* @param mdesc Pointer to the array of memory descriptors.
* @param desc_nr Number of memory descriptors in the array.
*/
void rt_hw_mmu_setup(rt_aspace_t aspace, struct mem_desc *mdesc, int desc_nr)
{
void *err;
for (size_t i = 0; i < desc_nr; i++)
{
size_t attr;
switch (mdesc->attr)
{
case NORMAL_MEM:
attr = MMU_MAP_K_RWCB;
break;
case NORMAL_NOCACHE_MEM:
attr = MMU_MAP_K_RWCB;
break;
case DEVICE_MEM:
attr = MMU_MAP_K_DEVICE;
break;
default:
attr = MMU_MAP_K_DEVICE;
}
struct rt_mm_va_hint hint = {
.flags = MMF_MAP_FIXED,
.limit_start = aspace->start,
.limit_range_size = aspace->size,
.map_size = mdesc->vaddr_end - mdesc->vaddr_start + 1,
.prefer = (void *)mdesc->vaddr_start};
if (mdesc->paddr_start == (rt_uintptr_t)ARCH_MAP_FAILED)
mdesc->paddr_start = mdesc->vaddr_start + PV_OFFSET;
rt_aspace_map_phy_static(aspace, &mdesc->varea, &hint, attr,
mdesc->paddr_start >> MM_PAGE_SHIFT, &err);
mdesc++;
}
rt_hw_asid_init();
rt_hw_aspace_switch(&rt_kernel_space);
rt_page_cleanup();
}
#define SATP_BASE ((rt_ubase_t)SATP_MODE << SATP_MODE_OFFSET)
extern unsigned int __bss_end;
/**
* @brief Early memory setup function for hardware initialization.
*
* This function performs early memory setup tasks, including:
* - Calculating the physical-to-virtual (PV) offset.
* - Setting up initial page tables for identity mapping and text region relocation.
* - Applying new memory mappings by updating the SATP register.
*
* @note This function is typically called during the early stages of system initialization (startup_gcc.S),
* before the memory management system is fully operational.
* Here the identity mapping is implemented by a 1-stage page table, whose page size is 1GB.
*/
void rt_hw_mem_setup_early(void)
{
rt_ubase_t pv_off;
rt_ubase_t ps = 0x0;
rt_ubase_t vs = 0x0;
rt_ubase_t *early_pgtbl = (rt_ubase_t *)(((size_t)&__bss_end + 4095) & ~0xfff);
/* calculate pv_offset */
void *symb_pc;
void *symb_linker;
__asm__ volatile("la %0, _start\n" : "=r"(symb_pc));
__asm__ volatile("la %0, _start_link_addr\n" : "=r"(symb_linker));
symb_linker = *(void **)symb_linker;
pv_off = symb_pc - symb_linker;
rt_kmem_pvoff_set(pv_off);
if (pv_off)
{
if (pv_off & ((1ul << (ARCH_INDEX_WIDTH * 2 + ARCH_PAGE_SHIFT)) - 1))
{
LOG_E("%s: not aligned virtual address. pv_offset %p", __func__,
pv_off);
RT_ASSERT(0);
}
/**
* identical mapping,
* PC are still at lower region before relocating to high memory
*/
rt_ubase_t pg_idx ;
/* Round down symb_pc to L1_PAGE_SIZE boundary to ensure proper page alignment.
* This is necessary because MMU operations work with page-aligned addresses, and
* make sure all the text region is mapped.*/
ps = (rt_ubase_t)symb_pc & (~(L1_PAGE_SIZE - 1));
pg_idx = GET_L1(ps);
early_pgtbl[pg_idx] = COMBINEPTE(ps, MMU_MAP_EARLY);
/* relocate text region */
__asm__ volatile("la %0, _start\n" : "=r"(ps));
ps &= ~(L1_PAGE_SIZE - 1);
vs = ps - pv_off;
/* relocate region */
rt_ubase_t vs_idx = GET_L1(vs);
rt_ubase_t ve_idx = GET_L1(vs + 0x80000000);
for (size_t i = vs_idx; i < ve_idx; i++)
{
early_pgtbl[i] = COMBINEPTE(ps, MMU_MAP_EARLY);
ps += L1_PAGE_SIZE;
}
/* apply new mapping */
asm volatile("sfence.vma x0, x0");
write_csr(satp, SATP_BASE | ((size_t)early_pgtbl >> PAGE_OFFSET_BIT));
asm volatile("sfence.vma x0, x0");
}
/* return to lower text section */
}
/**
* @brief Creates and initializes a new MMU page table.
*
* This function allocates a new MMU page table, copies the kernel space
* page table into it, and flushes the data cache to ensure consistency.
*
* @return
* - A pointer to the newly allocated MMU page table on success.
* - RT_NULL if the allocation fails.
*/
void *rt_hw_mmu_pgtbl_create(void)
{
rt_ubase_t *mmu_table;
mmu_table = (rt_ubase_t *)rt_pages_alloc_ext(0, PAGE_ANY_AVAILABLE);
if (!mmu_table)
{
return RT_NULL;
}
rt_memcpy(mmu_table, rt_kernel_space.page_table, ARCH_PAGE_SIZE);
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, mmu_table, ARCH_PAGE_SIZE);
return mmu_table;
}
/**
* @brief Deletes an MMU page table.
*
* This function frees the memory allocated for the given MMU page table.
*
* @param pgtbl Pointer to the MMU page table to be deleted.
*/
void rt_hw_mmu_pgtbl_delete(void *pgtbl)
{
rt_pages_free(pgtbl, 0);
}