mirror of
https://github.com/davea42/libdwarf-code.git
synced 2025-10-24 12:22:37 +08:00
1429 lines
39 KiB
C
1429 lines
39 KiB
C
/*
|
|
Copyright (C) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
|
|
Portions Copyright 2007-2010 Sun Microsystems, Inc. All rights reserved.
|
|
Portions Copyright 2008-2010 Arxan Technologies, Inc. All Rights Reserved.
|
|
Portions Copyright 2009-2012 David Anderson. All rights reserved.
|
|
Portions Copyright 2009-2010 Novell Inc. All rights reserved.
|
|
Portions Copyright 2012 SN Systems Ltd. All rights reserved.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of version 2.1 of the GNU Lesser General Public License
|
|
as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope that it would be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
Further, this software is distributed without any warranty that it is
|
|
free of the rightful claim of any third person regarding infringement
|
|
or the like. Any license provided herein, whether implied or
|
|
otherwise, applies only to this software file. Patent licenses, if
|
|
any, provided herein do not apply to combinations of this program with
|
|
other software, or any other product whatsoever.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this program; if not, write the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston MA 02110-1301,
|
|
USA.
|
|
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "dwarf_incl.h"
|
|
#include "dwarf_elf_access.h"
|
|
|
|
/* Include Relocation definitions in the case of Windows */
|
|
#ifdef _WIN32
|
|
#include "dwarf_reloc_arm.h"
|
|
#include "dwarf_reloc_mips.h"
|
|
#include "dwarf_reloc_ppc.h"
|
|
#include "dwarf_reloc_ppc64.h"
|
|
#include "dwarf_reloc_x86_64.h"
|
|
#endif /* _WIN32 */
|
|
|
|
#ifdef HAVE_ELF_H
|
|
#include <elf.h>
|
|
#endif
|
|
#ifdef HAVE_LIBELF_H
|
|
#include <libelf.h>
|
|
#else
|
|
#ifdef HAVE_LIBELF_LIBELF_H
|
|
#include <libelf/libelf.h>
|
|
#endif
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#define FALSE 0
|
|
#define TRUE 1
|
|
|
|
#ifndef EM_MIPS
|
|
/* This is the standard elf value EM_MIPS. */
|
|
#define EM_MIPS 8
|
|
#endif
|
|
|
|
#ifndef EM_K10M
|
|
#define EM_K10M 181 /* Intel K10M */
|
|
#endif
|
|
#ifndef EM_L10M
|
|
#define EM_L10M 180 /* Intel L10M */
|
|
#endif
|
|
#ifndef EM_AARCH64
|
|
#define EM_AARCH64 183 /* Arm 64 */
|
|
#endif
|
|
#ifndef R_AARCH64_ABS64
|
|
#define R_AARCH64_ABS64 0x101
|
|
#endif
|
|
#ifndef R_AARCH64_ABS32
|
|
#define R_AARCH64_ABS32 0x102
|
|
#endif
|
|
#ifndef R_MIPS_64
|
|
#define R_MIPS_64 18
|
|
#endif
|
|
#ifndef R_MIPS_TLS_TPREL64
|
|
#define R_MIPS_TLS_TPREL64 48
|
|
#endif
|
|
|
|
#ifndef EM_IA_64
|
|
#define EM_IA_64 50
|
|
#endif
|
|
#ifndef R_IA64_SECREL32LSB
|
|
#define R_IA64_SECREL32LSB 0x65
|
|
#endif
|
|
#ifndef R_IA64_DIR32MSB
|
|
#define R_IA64_DIR32MSB 0x24
|
|
#endif
|
|
#ifndef R_IA64_DIR32LSB
|
|
#define R_IA64_DIR32LSB 0x25
|
|
#endif
|
|
#ifndef R_IA64_DIR64MSB
|
|
#define R_IA64_DIR64MSB 0x26
|
|
#endif
|
|
#ifndef R_IA64_DIR64LSB
|
|
#define R_IA64_DIR64LSB 0x27
|
|
#endif
|
|
#ifndef R_IA64_SECREL64LSB
|
|
#define R_IA64_SECREL64LSB 0x67
|
|
#endif
|
|
#ifndef R_IA64_SECREL64MSB
|
|
#define R_IA64_SECREL64MSB 0x66
|
|
#endif
|
|
#ifndef R_IA64_DTPREL32LSB
|
|
#define R_IA64_DTPREL32LSB 0xb5
|
|
#endif
|
|
#ifndef R_IA64_DTPREL32MSB
|
|
#define R_IA64_DTPREL32MSB 0xb4
|
|
#endif
|
|
#ifndef R_IA64_DTPREL64LSB
|
|
#define R_IA64_DTPREL64LSB 0xb7
|
|
#endif
|
|
#ifndef R_IA64_DTPREL64MSB
|
|
#define R_IA64_DTPREL64MSB 0xb6
|
|
#endif
|
|
|
|
#ifndef EM_S390
|
|
#define EM_S390 22
|
|
#endif
|
|
#ifndef R_390_TLS_LDO32
|
|
#define R_390_TLS_LDO32 52
|
|
#endif
|
|
#ifndef R_390_TLS_LDO64
|
|
#define R_390_TLS_LDO64 53
|
|
#endif
|
|
|
|
#ifndef R_390_32
|
|
#define R_390_32 4
|
|
#endif
|
|
#ifndef R_390_64
|
|
#define R_390_64 22
|
|
#endif
|
|
|
|
#ifndef EM_SH
|
|
#define EM_SH 42
|
|
#endif
|
|
#ifndef R_SH_DIR32
|
|
#define R_SH_DIR32 1
|
|
#endif
|
|
#ifndef R_SH_TLS_DTPOFF32
|
|
#define R_SH_TLS_DTPOFF32 150
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_ELF64_GETEHDR
|
|
extern Elf64_Ehdr *elf64_getehdr(Elf *);
|
|
#endif
|
|
#ifdef HAVE_ELF64_GETSHDR
|
|
extern Elf64_Shdr *elf64_getshdr(Elf_Scn *);
|
|
#endif
|
|
#ifdef WORDS_BIGENDIAN
|
|
#define WRITE_UNALIGNED(dbg,dest,source, srclength,len_out) \
|
|
{ \
|
|
dbg->de_copy_word(dest, \
|
|
((char *)source) +srclength-len_out, \
|
|
len_out) ; \
|
|
}
|
|
|
|
|
|
#else /* LITTLE ENDIAN */
|
|
|
|
#define WRITE_UNALIGNED(dbg,dest,source, srclength,len_out) \
|
|
{ \
|
|
dbg->de_copy_word( (dest) , \
|
|
((char *)source) , \
|
|
len_out) ; \
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
typedef struct {
|
|
dwarf_elf_handle elf;
|
|
int is_64bit;
|
|
Dwarf_Small length_size;
|
|
Dwarf_Small pointer_size;
|
|
Dwarf_Unsigned section_count;
|
|
Dwarf_Endianness endianness;
|
|
Dwarf_Small machine;
|
|
int libdwarf_owns_elf;
|
|
Elf32_Ehdr *ehdr32;
|
|
|
|
#ifdef HAVE_ELF64_GETEHDR
|
|
Elf64_Ehdr *ehdr64;
|
|
#endif
|
|
/* Elf symtab and its strtab. Initialized at first
|
|
call to do relocations, the actual data is in the Dwarf_Debug
|
|
struct, not allocated locally here. */
|
|
struct Dwarf_Section_s *symtab;
|
|
struct Dwarf_Section_s *strtab;
|
|
|
|
} dwarf_elf_object_access_internals_t;
|
|
|
|
struct Dwarf_Elf_Rela {
|
|
Dwarf_ufixed64 r_offset;
|
|
/*Dwarf_ufixed64 r_info; */
|
|
Dwarf_ufixed64 r_type;
|
|
Dwarf_ufixed64 r_symidx;
|
|
Dwarf_ufixed64 r_addend;
|
|
};
|
|
|
|
|
|
static int dwarf_elf_object_access_load_section(void* obj_in,
|
|
Dwarf_Half section_index,
|
|
Dwarf_Small** section_data,
|
|
int* error);
|
|
|
|
/* dwarf_elf_object_access_internals_init()
|
|
On error, set *error with libdwarf error code.
|
|
*/
|
|
static int
|
|
dwarf_elf_object_access_internals_init(void* obj_in,
|
|
dwarf_elf_handle elf,
|
|
int* error)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
char *ehdr_ident = 0;
|
|
Dwarf_Half machine = 0;
|
|
obj->elf = elf;
|
|
|
|
if ((ehdr_ident = elf_getident(elf, NULL)) == NULL) {
|
|
*error = DW_DLE_ELF_GETIDENT_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
obj->is_64bit = (ehdr_ident[EI_CLASS] == ELFCLASS64);
|
|
|
|
|
|
if (ehdr_ident[EI_DATA] == ELFDATA2LSB){
|
|
obj->endianness = DW_OBJECT_LSB;
|
|
} else if (ehdr_ident[EI_DATA] == ELFDATA2MSB){
|
|
obj->endianness = DW_OBJECT_MSB;
|
|
}
|
|
|
|
if (obj->is_64bit) {
|
|
#ifdef HAVE_ELF64_GETEHDR
|
|
obj->ehdr64 = elf64_getehdr(elf);
|
|
if (obj->ehdr64 == NULL) {
|
|
*error = DW_DLE_ELF_GETEHDR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
obj->section_count = obj->ehdr64->e_shnum;
|
|
machine = obj->ehdr64->e_machine;
|
|
obj->machine = machine;
|
|
#else
|
|
*error = DW_DLE_NO_ELF64_SUPPORT;
|
|
return DW_DLV_ERROR;
|
|
#endif
|
|
} else {
|
|
obj->ehdr32 = elf32_getehdr(elf);
|
|
if (obj->ehdr32 == NULL) {
|
|
*error = DW_DLE_ELF_GETEHDR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
obj->section_count = obj->ehdr32->e_shnum;
|
|
machine = obj->ehdr32->e_machine;
|
|
obj->machine = machine;
|
|
}
|
|
|
|
/* The following length_size is Not Too Significant. Only used
|
|
one calculation, and an approximate one at that. */
|
|
obj->length_size = obj->is_64bit ? 8 : 4;
|
|
obj->pointer_size = obj->is_64bit ? 8 : 4;
|
|
|
|
#ifdef _WIN32
|
|
if (obj->is_64bit && machine == EM_PPC64) {
|
|
/* The SNC compiler generates the EM_PPC64 machine type for the
|
|
PS3 platform, but is a 32 bits pointer size in user mode. */
|
|
obj->pointer_size = 4;
|
|
}
|
|
#endif /* _WIN32 */
|
|
|
|
if (obj->is_64bit && machine != EM_MIPS) {
|
|
/* MIPS/IRIX makes pointer size and length size 8 for -64.
|
|
Other platforms make length 4 always. */
|
|
/* 4 here supports 32bit-offset dwarf2, as emitted by cygnus
|
|
tools, and the dwarfv2.1 64bit extension setting.
|
|
This is not the same as the size-of-an-offset, which
|
|
is 4 in 32bit dwarf and 8 in 64bit dwarf. */
|
|
obj->length_size = 4;
|
|
}
|
|
return DW_DLV_OK;
|
|
}
|
|
|
|
/* dwarf_elf_object_access_get_byte_order */
|
|
static
|
|
Dwarf_Endianness
|
|
dwarf_elf_object_access_get_byte_order(void* obj_in)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
return obj->endianness;
|
|
}
|
|
|
|
/* dwarf_elf_object_access_get_section_count() */
|
|
static
|
|
Dwarf_Unsigned
|
|
dwarf_elf_object_access_get_section_count(void * obj_in)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
return obj->section_count;
|
|
}
|
|
|
|
|
|
static int
|
|
_dwarf_get_elf_flags_func(
|
|
void* obj_in,
|
|
Dwarf_Half section_index,
|
|
Dwarf_Unsigned *flags_out,
|
|
Dwarf_Unsigned *addralign_out,
|
|
int *error)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
|
|
Elf32_Shdr *shdr32 = 0;
|
|
|
|
#ifdef HAVE_ELF64_GETSHDR
|
|
Elf64_Shdr *shdr64 = 0;
|
|
#endif
|
|
Elf_Scn *scn = 0;
|
|
|
|
|
|
scn = elf_getscn(obj->elf, section_index);
|
|
if (scn == NULL) {
|
|
*error = DW_DLE_MDE;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
if (obj->is_64bit) {
|
|
#ifdef HAVE_ELF64_GETSHDR
|
|
shdr64 = elf64_getshdr(scn);
|
|
if (shdr64 == NULL) {
|
|
*error = DW_DLE_ELF_GETSHDR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
/* Get also section 'sh_type' and sh_info' fields, so the caller
|
|
can use it for additional tasks that require that info. */
|
|
*flags_out = shdr64->sh_flags;
|
|
*addralign_out = shdr64->sh_addralign;
|
|
return DW_DLV_OK;
|
|
#else
|
|
*error = DW_DLE_MISSING_ELF64_SUPPORT;
|
|
return DW_DLV_ERROR;
|
|
#endif /* HAVE_ELF64_GETSHDR */
|
|
}
|
|
if ((shdr32 = elf32_getshdr(scn)) == NULL) {
|
|
*error = DW_DLE_ELF_GETSHDR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
/* Get also the section type, so the caller can use it for
|
|
additional tasks that require to know the section type. */
|
|
*flags_out = shdr32->sh_flags;
|
|
*addralign_out = shdr32->sh_addralign;
|
|
return DW_DLV_OK;
|
|
}
|
|
|
|
|
|
/* dwarf_elf_object_access_get_section()
|
|
|
|
If writing a function vaguely like this for a non-elf object,
|
|
be sure that when section-index is passed in as zero that
|
|
you set the fields in *ret_scn to reflect an empty section
|
|
with an empty string as the section name. Adjust your
|
|
section indexes of your non-elf-reading-code
|
|
for all the necessary functions in Dwarf_Obj_Access_Methods_s
|
|
accordingly.
|
|
|
|
Should have gotten sh_flags, sh_addralign too.
|
|
But Dwarf_Obj_Access_Section is publically defined so changing
|
|
it is quite painful for everyone.
|
|
*/
|
|
static
|
|
int
|
|
dwarf_elf_object_access_get_section_info(
|
|
void* obj_in,
|
|
Dwarf_Half section_index,
|
|
Dwarf_Obj_Access_Section* ret_scn,
|
|
int* error)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
|
|
Elf32_Shdr *shdr32 = 0;
|
|
|
|
#ifdef HAVE_ELF64_GETSHDR
|
|
Elf64_Shdr *shdr64 = 0;
|
|
#endif
|
|
Elf_Scn *scn = 0;
|
|
|
|
|
|
scn = elf_getscn(obj->elf, section_index);
|
|
if (scn == NULL) {
|
|
*error = DW_DLE_MDE;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
if (obj->is_64bit) {
|
|
#ifdef HAVE_ELF64_GETSHDR
|
|
shdr64 = elf64_getshdr(scn);
|
|
if (shdr64 == NULL) {
|
|
*error = DW_DLE_ELF_GETSHDR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
/* Get also section 'sh_type' and sh_info' fields, so the caller
|
|
can use it for additional tasks that require that info. */
|
|
ret_scn->type = shdr64->sh_type;
|
|
ret_scn->size = shdr64->sh_size;
|
|
ret_scn->addr = shdr64->sh_addr;
|
|
ret_scn->link = shdr64->sh_link;
|
|
ret_scn->info = shdr64->sh_info;
|
|
ret_scn->entrysize = shdr64->sh_entsize;
|
|
ret_scn->name = elf_strptr(obj->elf, obj->ehdr64->e_shstrndx,
|
|
shdr64->sh_name);
|
|
if (ret_scn->name == NULL) {
|
|
*error = DW_DLE_ELF_STRPTR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
return DW_DLV_OK;
|
|
#else
|
|
*error = DW_DLE_MISSING_ELF64_SUPPORT;
|
|
return DW_DLV_ERROR;
|
|
#endif /* HAVE_ELF64_GETSHDR */
|
|
}
|
|
if ((shdr32 = elf32_getshdr(scn)) == NULL) {
|
|
*error = DW_DLE_ELF_GETSHDR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
/* Get also the section type, so the caller can use it for
|
|
additional tasks that require to know the section type. */
|
|
ret_scn->type = shdr32->sh_type;
|
|
ret_scn->size = shdr32->sh_size;
|
|
ret_scn->addr = shdr32->sh_addr;
|
|
ret_scn->link = shdr32->sh_link;
|
|
ret_scn->info = shdr32->sh_info;
|
|
ret_scn->entrysize = shdr32->sh_entsize;
|
|
ret_scn->name = elf_strptr(obj->elf, obj->ehdr32->e_shstrndx,
|
|
shdr32->sh_name);
|
|
if (ret_scn->name == NULL) {
|
|
*error = DW_DLE_ELF_STRPTR_ERROR;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
return DW_DLV_OK;
|
|
}
|
|
|
|
/* dwarf_elf_object_access_get_length_size */
|
|
static
|
|
Dwarf_Small
|
|
dwarf_elf_object_access_get_length_size(void* obj_in)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
return obj->length_size;
|
|
}
|
|
|
|
/* dwarf_elf_object_access_get_pointer_size */
|
|
static
|
|
Dwarf_Small
|
|
dwarf_elf_object_access_get_pointer_size(void* obj_in)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
return obj->pointer_size;
|
|
}
|
|
|
|
#define MATCH_REL_SEC(i_,s_,r_) \
|
|
if (i_ == s_.dss_index) { \
|
|
*r_ = &s_; \
|
|
return DW_DLV_OK; \
|
|
}
|
|
|
|
static int
|
|
find_section_to_relocate(Dwarf_Debug dbg,Dwarf_Half section_index,
|
|
struct Dwarf_Section_s **relocatablesec, int *error)
|
|
{
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_info,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_abbrev,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_line,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_loc,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_aranges,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_macinfo,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_pubnames,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_ranges,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_frame,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_frame_eh_gnu,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_pubtypes,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_funcnames,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_typenames,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_varnames,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_weaknames,relocatablesec);
|
|
MATCH_REL_SEC(section_index,dbg->de_debug_types,relocatablesec);
|
|
/* dbg-> de_debug_tu_index,reloctablesec); */
|
|
/* dbg-> de_debug_cu_index,reloctablesec); */
|
|
/* dbg-> de_debug_gdbindex,reloctablesec); */
|
|
/* dbg-> de_debug_str,syms); */
|
|
/* de_elf_symtab,syms); */
|
|
/* de_elf_strtab,syms); */
|
|
*error = DW_DLE_RELOC_SECTION_MISMATCH;
|
|
return DW_DLV_ERROR;
|
|
|
|
}
|
|
#undef MATCH_REL_SEC
|
|
|
|
static void
|
|
get_rela_elf32(Dwarf_Small *data, unsigned int i,
|
|
UNUSEDARG int endianness,
|
|
UNUSEDARG int machine,
|
|
struct Dwarf_Elf_Rela *relap)
|
|
{
|
|
Elf32_Rela *relp = (Elf32_Rela*)(data + (i * sizeof(Elf32_Rela)));
|
|
relap->r_offset = relp->r_offset;
|
|
/*
|
|
relap->r_info = relp->r_info;
|
|
*/
|
|
relap->r_type = ELF32_R_TYPE(relp->r_info);
|
|
relap->r_symidx = ELF32_R_SYM(relp->r_info);
|
|
relap->r_addend = relp->r_addend;
|
|
}
|
|
|
|
static void
|
|
get_rela_elf64(Dwarf_Small *data, unsigned int i,
|
|
int endianness,
|
|
int machine,
|
|
struct Dwarf_Elf_Rela *relap)
|
|
{
|
|
#ifdef HAVE_ELF64_RELA
|
|
Elf64_Rela * relp = (Elf64_Rela*)(data + (i * sizeof(Elf64_Rela)));
|
|
relap->r_offset = relp->r_offset;
|
|
/*
|
|
relap->r_info = relp->r_info;
|
|
*/
|
|
#define ELF64MIPS_REL_SYM(i) ((i) & 0xffffffff)
|
|
#define ELF64MIPS_REL_TYPE(i) ((i >> 56) &0xff)
|
|
if (machine == EM_MIPS && endianness == DW_OBJECT_LSB ){
|
|
/* This is really wierd. Treat this very specially.
|
|
The Elf64 LE MIPS object used for
|
|
testing (that has rela) wants the
|
|
values as sym ssym type3 type2 type, treating
|
|
each value as independent value. But libelf xlate
|
|
treats it as something else so we fudge here.
|
|
It is unclear
|
|
how to precisely characterize where these relocations
|
|
were used.
|
|
SGI MIPS on IRIX never used .rela relocations.
|
|
The BE 64bit elf MIPS test object with rela uses traditional
|
|
elf relocation layouts, not this special case. */
|
|
/* We ignore the special TYPE2 and TYPE3, they should be
|
|
value R_MIPS_NONE in rela. */
|
|
relap->r_type = ELF64MIPS_REL_TYPE(relp->r_info);
|
|
relap->r_symidx = ELF64MIPS_REL_SYM(relp->r_info);
|
|
#undef MIPS64SYM
|
|
#undef MIPS64TYPE
|
|
} else
|
|
{
|
|
relap->r_type = ELF64_R_TYPE(relp->r_info);
|
|
relap->r_symidx = ELF64_R_SYM(relp->r_info);
|
|
}
|
|
relap->r_addend = relp->r_addend;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
get_relocations_array(Dwarf_Bool is_64bit,
|
|
int endianness,
|
|
int machine,
|
|
Dwarf_Small *data,
|
|
unsigned int num_relocations,
|
|
struct Dwarf_Elf_Rela *relap)
|
|
{
|
|
unsigned int i = 0;
|
|
void (*get_relocations)(Dwarf_Small *data, unsigned int i,
|
|
int endianness,
|
|
int machine,
|
|
struct Dwarf_Elf_Rela *relap);
|
|
|
|
/* Handle 32/64 bit issue */
|
|
if (is_64bit) {
|
|
get_relocations = get_rela_elf64;
|
|
} else {
|
|
get_relocations = get_rela_elf32;
|
|
}
|
|
|
|
for (i=0; i < num_relocations; i++) {
|
|
get_relocations(data, i,endianness,machine,
|
|
&(relap[i]));
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
get_relocation_entries(Dwarf_Bool is_64bit,
|
|
int endianness,
|
|
int machine,
|
|
Dwarf_Small *relocation_section,
|
|
Dwarf_Unsigned relocation_section_size,
|
|
Dwarf_Unsigned relocation_section_entrysize,
|
|
struct Dwarf_Elf_Rela **relas,
|
|
unsigned int *nrelas,
|
|
int *error)
|
|
{
|
|
unsigned int relocation_size = 0;
|
|
|
|
if (is_64bit) {
|
|
#ifdef HAVE_ELF64_RELA
|
|
relocation_size = sizeof(Elf64_Rela);
|
|
#else
|
|
*error = DW_DLE_MISSING_ELF64_SUPPORT;
|
|
return DW_DLV_ERROR;
|
|
#endif
|
|
} else {
|
|
relocation_size = sizeof(Elf32_Rela);
|
|
}
|
|
if (relocation_size != relocation_section_entrysize) {
|
|
/* Means our struct definition does not match the
|
|
real object. */
|
|
*error = DW_DLE_RELOC_SECTION_LENGTH_ODD;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
if (relocation_section == NULL) {
|
|
*error = DW_DLE_RELOC_SECTION_PTR_NULL;
|
|
return(DW_DLV_ERROR);
|
|
}
|
|
|
|
if ((relocation_section_size != 0)) {
|
|
size_t bytescount = 0;
|
|
if (relocation_section_size%relocation_size) {
|
|
*error = DW_DLE_RELOC_SECTION_LENGTH_ODD;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
*nrelas = relocation_section_size/relocation_size;
|
|
bytescount = (*nrelas) * sizeof(struct Dwarf_Elf_Rela);
|
|
*relas = malloc(bytescount);
|
|
if (!*relas) {
|
|
*error = DW_DLE_MAF;
|
|
return(DW_DLV_ERROR);
|
|
}
|
|
memset(*relas,0,bytescount);
|
|
get_relocations_array(is_64bit,endianness,machine,
|
|
relocation_section,
|
|
*nrelas, *relas);
|
|
}
|
|
return(DW_DLV_OK);
|
|
}
|
|
|
|
/* We have a EM_QUALCOMM_DSP6 relocatable object
|
|
test case in dwarf regression tests, atefail/ig_server.
|
|
Values for QUALCOMM were derived from this executable.
|
|
|
|
The r = 0 in the function will get optimized away
|
|
when not needed.
|
|
|
|
*/
|
|
|
|
#define EM_QUALCOMM_DSP6 0xa4
|
|
#define QUALCOMM_REL32 6
|
|
|
|
static Dwarf_Bool
|
|
is_32bit_abs_reloc(unsigned int type, Dwarf_Half machine)
|
|
{
|
|
Dwarf_Bool r = 0;
|
|
switch (machine) {
|
|
#if defined(EM_MIPS) && defined (R_MIPS_32)
|
|
case EM_MIPS:
|
|
r = (0
|
|
#if defined (R_MIPS_32)
|
|
| (type == R_MIPS_32)
|
|
#endif
|
|
#if defined (R_MIPS_TLS_DTPREL32)
|
|
| (type == R_MIPS_TLS_DTPREL32)
|
|
#endif /* DTPREL32 */
|
|
);
|
|
break;
|
|
#endif /* MIPS case */
|
|
#if defined(EM_SPARC32PLUS) && defined (R_SPARC_UA32)
|
|
case EM_SPARC32PLUS:
|
|
r = (type == R_SPARC_UA32);
|
|
break;
|
|
#endif
|
|
#if defined(EM_SPARCV9) && defined (R_SPARC_UA32)
|
|
case EM_SPARCV9:
|
|
r = (type == R_SPARC_UA32);
|
|
break;
|
|
#endif
|
|
#if defined(EM_SPARC) && defined (R_SPARC_UA32)
|
|
case EM_SPARC:
|
|
r = (0
|
|
#if defined(R_SPARC_UA32)
|
|
| (type == R_SPARC_UA32)
|
|
#endif
|
|
#if (R_SPARC_TLS_DTPOFF32)
|
|
| (type == R_SPARC_TLS_DTPOFF32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_SPARC */
|
|
#if defined(EM_386) && defined (R_386_32)
|
|
case EM_386:
|
|
r = (0
|
|
#if defined (R_386_32)
|
|
| (type == R_386_32)
|
|
#endif
|
|
#if defined (R_386_TLS_LDO_32)
|
|
| (type == R_386_TLS_LDO_32)
|
|
#endif
|
|
#if defined (R_386_TLS_DTPOFF32)
|
|
| (type == R_386_TLS_DTPOFF32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_386 */
|
|
|
|
#if defined (EM_SH) && defined (R_SH_DIR32)
|
|
case EM_SH:
|
|
r = (0
|
|
#if defined (R_SH_DIR32)
|
|
| (type == R_SH_DIR32)
|
|
#endif
|
|
#if defined (R_SH_DTPOFF32)
|
|
| (type == R_SH_TLS_DTPOFF32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* SH */
|
|
|
|
#if defined(EM_IA_64) && defined (R_IA64_SECREL32LSB)
|
|
case EM_IA_64: /* 32bit? ! */
|
|
r = (0
|
|
#if defined (R_IA64_SECREL32LSB)
|
|
| (type == R_IA64_SECREL32LSB)
|
|
#endif
|
|
#if defined (R_IA64_DIR32LSB)
|
|
| (type == R_IA64_DIR32LSB)
|
|
#endif
|
|
#if defined (R_IA64_DTPREL32LSB)
|
|
| (type == R_IA64_DTPREL32LSB)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_IA_64 */
|
|
|
|
#if defined(EM_ARM) && defined (R_ARM_ABS32)
|
|
case EM_ARM:
|
|
case EM_AARCH64:
|
|
r = (0
|
|
#if defined (R_ARM_ABS32)
|
|
| ( type == R_ARM_ABS32)
|
|
#endif
|
|
#if defined (R_AARCH64_ABS32)
|
|
| ( type == R_AARCH64_ABS32)
|
|
#endif
|
|
#if defined (R_ARM_TLS_LDO32)
|
|
| ( type == R_ARM_TLS_LDO32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_ARM */
|
|
|
|
/* On FreeBSD R_PPC64_ADDR32 not defined
|
|
so we use the R_PPC_ names which
|
|
have the proper value.
|
|
Our headers have:
|
|
R_PPC64_ADDR64 38
|
|
R_PPC_ADDR32 1 so we use this one
|
|
R_PPC64_ADDR32 R_PPC_ADDR32
|
|
|
|
R_PPC64_DTPREL32 110 which may be wrong/unavailable
|
|
R_PPC64_DTPREL64 78
|
|
R_PPC_DTPREL32 78
|
|
*/
|
|
#if defined(EM_PPC64) && defined (R_PPC_ADDR32)
|
|
case EM_PPC64:
|
|
r = (0
|
|
#if defined(R_PPC_ADDR32)
|
|
| (type == R_PPC_ADDR32)
|
|
#endif
|
|
#if defined(R_PPC64_DTPREL32)
|
|
| (type == R_PPC64_DTPREL32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_PPC64 */
|
|
|
|
|
|
#if defined(EM_PPC) && defined (R_PPC_ADDR32)
|
|
case EM_PPC:
|
|
r = (0
|
|
#if defined (R_PPC_ADDR32)
|
|
| (type == R_PPC_ADDR32)
|
|
#endif
|
|
#if defined (R_PPC_DTPREL32)
|
|
| (type == R_PPC_DTPREL32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_PPC */
|
|
|
|
#if defined(EM_S390) && defined (R_390_32)
|
|
case EM_S390:
|
|
r = (0
|
|
#if defined (R_390_32)
|
|
| (type == R_390_32)
|
|
#endif
|
|
#if defined (R_390_TLS_LDO32)
|
|
| (type == R_390_TLS_LDO32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_S390 */
|
|
|
|
#if defined(EM_X86_64) && defined (R_X86_64_32)
|
|
#if defined(EM_K10M)
|
|
case EM_K10M:
|
|
#endif
|
|
#if defined(EM_L10M)
|
|
case EM_L10M:
|
|
#endif
|
|
case EM_X86_64:
|
|
r = (0
|
|
#if defined (R_X86_64_32)
|
|
| (type == R_X86_64_32)
|
|
#endif
|
|
#if defined (R_X86_64_DTPOFF32)
|
|
| (type == R_X86_64_DTPOFF32)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_X86_64 */
|
|
|
|
case EM_QUALCOMM_DSP6:
|
|
r = (type == QUALCOMM_REL32);
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static Dwarf_Bool
|
|
is_64bit_abs_reloc(unsigned int type, Dwarf_Half machine)
|
|
{
|
|
Dwarf_Bool r = 0;
|
|
switch (machine) {
|
|
#if defined(EM_MIPS) && defined (R_MIPS_64)
|
|
case EM_MIPS:
|
|
r = (0
|
|
#if defined (R_MIPS_64)
|
|
| (type == R_MIPS_64)
|
|
#endif
|
|
#if defined (R_MIPS_32)
|
|
| (type == R_MIPS_32)
|
|
#endif
|
|
#if defined(R_MIPS_TLS_DTPREL64)
|
|
| (type == R_MIPS_TLS_DTPREL64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_MIPS */
|
|
#if defined(EM_SPARC32PLUS) && defined (R_SPARC_UA64)
|
|
case EM_SPARC32PLUS:
|
|
r = (type == R_SPARC_UA64);
|
|
break;
|
|
#endif
|
|
#if defined(EM_SPARCV9) && defined (R_SPARC_UA64)
|
|
case EM_SPARCV9:
|
|
r = (0
|
|
#if defined (R_SPARC_UA64)
|
|
| (type == R_SPARC_UA64)
|
|
#endif
|
|
#if defined (R_SPARC_TLS_DTPOFF64)
|
|
| (type == R_SPARC_TLS_DTPOFF64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif
|
|
#if defined(EM_SPARC) && defined (R_SPARC_UA64)
|
|
case EM_SPARC:
|
|
r = (0
|
|
#if defined(R_SPARC_UA64)
|
|
| (type == R_SPARC_UA64)
|
|
#endif
|
|
#if defined (R_SPARC_TLS_DTPOFF64)
|
|
| (type == R_SPARC_TLS_DTPOFF64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_SPARC */
|
|
|
|
#if defined(EM_IA_64) && defined (R_IA64_SECREL64LSB)
|
|
case EM_IA_64: /* 64bit */
|
|
r = (0
|
|
#if defined (R_IA64_SECREL64LSB)
|
|
| (type == R_IA64_SECREL64LSB)
|
|
#endif
|
|
#if defined (R_IA64_SECREL32LSB)
|
|
| (type == R_IA64_SECREL32LSB)
|
|
#endif
|
|
#if defined (R_IA64_DIR64LSB)
|
|
| (type == R_IA64_DIR64LSB)
|
|
#endif
|
|
#if defined (R_IA64_DTPREL64LSB)
|
|
| (type == R_IA64_DTPREL64LSB)
|
|
#endif
|
|
#if defined (R_IA64_REL32LSB)
|
|
| (type == R_IA64_REL32LSB)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_IA_64 */
|
|
|
|
#if defined(EM_PPC64) && defined (R_PPC64_ADDR64)
|
|
case EM_PPC64:
|
|
r = (0
|
|
#if defined(R_PPC64_ADDR64)
|
|
| (type == R_PPC64_ADDR64)
|
|
#endif
|
|
#if defined(R_PPC64_DTPREL64)
|
|
| (type == R_PPC64_DTPREL64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_PPC64 */
|
|
|
|
#if defined(EM_S390) && defined (R_390_64)
|
|
case EM_S390:
|
|
r = (0
|
|
#if defined(R_390_64)
|
|
| (type == R_390_64)
|
|
#endif
|
|
#if defined(R_390_TLS_LDO64)
|
|
| (type == R_390_TLS_LDO64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_390 */
|
|
|
|
#if defined(EM_X86_64) && defined (R_X86_64_64)
|
|
#if defined(EM_K10M)
|
|
case EM_K10M:
|
|
#endif
|
|
#if defined(EM_L10M)
|
|
case EM_L10M:
|
|
#endif
|
|
case EM_X86_64:
|
|
r = (0
|
|
#if defined (R_X86_64_64)
|
|
| (type == R_X86_64_64)
|
|
#endif
|
|
#if defined (R_X86_64_DTPOFF32)
|
|
| (type == R_X86_64_DTPOFF64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_X86_64 */
|
|
#if defined(EM_AARCH64) && defined (R_AARCH64_ABS64)
|
|
case EM_AARCH64:
|
|
r = (0
|
|
#if defined (R_AARCH64_ABS64)
|
|
| ( type == R_AARCH64_ABS64)
|
|
#endif
|
|
);
|
|
break;
|
|
#endif /* EM_AARCH64 */
|
|
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
/* Returns DW_DLV_OK if it works, else DW_DLV_ERROR.
|
|
The caller may decide to ignore the errors or report them. */
|
|
static int
|
|
update_entry(Dwarf_Debug dbg,
|
|
Dwarf_Bool is_64bit,
|
|
UNUSEDARG Dwarf_Endianness endianess,
|
|
UNUSEDARG Dwarf_Half machine,
|
|
struct Dwarf_Elf_Rela *rela,
|
|
Dwarf_Small *target_section,
|
|
Dwarf_Small *symtab_section_data,
|
|
Dwarf_Unsigned symtab_section_size,
|
|
Dwarf_Unsigned symtab_section_entrysize,
|
|
int *error)
|
|
{
|
|
unsigned int type = 0;
|
|
unsigned int sym_idx = 0;
|
|
#ifdef HAVE_ELF64_SYM
|
|
Elf64_Sym sym_buf;
|
|
Elf64_Sym *sym = 0;
|
|
#else
|
|
Elf32_Sym sym_buf;
|
|
Elf32_Sym *sym = 0;
|
|
#endif
|
|
Elf32_Sym *sym32 = 0;
|
|
Dwarf_ufixed64 offset = 0;
|
|
Dwarf_sfixed64 addend = 0;
|
|
Dwarf_Unsigned reloc_size = 0;
|
|
Dwarf_Unsigned symtab_entry_count = 0;
|
|
|
|
if (symtab_section_entrysize == 0) {
|
|
*error = DW_DLE_SYMTAB_SECTION_ENTRYSIZE_ZERO;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
symtab_entry_count = symtab_section_size/symtab_section_entrysize;
|
|
|
|
/* Dwarf_Elf_Rela dereferencing */
|
|
offset = rela->r_offset;
|
|
addend = rela->r_addend;
|
|
type = rela->r_type;
|
|
sym_idx = rela->r_symidx;
|
|
if (sym_idx >= symtab_entry_count) {
|
|
*error = DW_DLE_RELOC_SECTION_SYMBOL_INDEX_BAD;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
|
|
|
|
if (is_64bit) {
|
|
#ifdef HAVE_ELF64_SYM
|
|
sym = &((Elf64_Sym*)symtab_section_data)[sym_idx];
|
|
#endif
|
|
} else {
|
|
sym32 = &((Elf32_Sym*)symtab_section_data)[sym_idx];
|
|
|
|
/* Convert Elf32_Sym struct to Elf64_Sym struct. We point at
|
|
an Elf64_Sym local variable (sym_buf) to allow us to use the
|
|
same pointer (sym) for both 32-bit and 64-bit instances. */
|
|
sym = &sym_buf;
|
|
sym->st_name = sym32->st_name;
|
|
sym->st_info = sym32->st_info;
|
|
sym->st_other = sym32->st_other;
|
|
sym->st_shndx = sym32->st_shndx;
|
|
sym->st_value = sym32->st_value;
|
|
sym->st_size = sym32->st_size;
|
|
}
|
|
|
|
/* Determine relocation size */
|
|
if (is_32bit_abs_reloc(type, machine)) {
|
|
reloc_size = 4;
|
|
} else if (is_64bit_abs_reloc(type, machine)) {
|
|
reloc_size = 8;
|
|
} else {
|
|
*error = DW_DLE_RELOC_SECTION_RELOC_TARGET_SIZE_UNKNOWN;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
|
|
{
|
|
/* Assuming we do not need to do a READ_UNALIGNED here
|
|
at target_section + offset and add its value to
|
|
outval. Some ABIs say no read (for example MIPS),
|
|
but if some do then which ones? */
|
|
Dwarf_Unsigned outval = sym->st_value + addend;
|
|
WRITE_UNALIGNED(dbg,target_section + offset,
|
|
&outval,sizeof(outval),reloc_size);
|
|
}
|
|
return DW_DLV_OK;
|
|
}
|
|
|
|
|
|
|
|
/* Somewhat arbitrarily, we attempt to apply all the relocations we can
|
|
and still notify the caller of at least one error if we found
|
|
any errors. */
|
|
static int
|
|
apply_rela_entries(Dwarf_Debug dbg,
|
|
Dwarf_Bool is_64bit,
|
|
Dwarf_Endianness endianess,
|
|
Dwarf_Half machine,
|
|
Dwarf_Small *target_section,
|
|
Dwarf_Small *symtab_section,
|
|
Dwarf_Unsigned symtab_section_size,
|
|
Dwarf_Unsigned symtab_section_entrysize,
|
|
struct Dwarf_Elf_Rela *relas, unsigned int nrelas,
|
|
int *error)
|
|
{
|
|
int return_res = DW_DLV_OK;
|
|
if ((target_section != NULL) && (relas != NULL)) {
|
|
unsigned int i;
|
|
if (symtab_section_entrysize == 0) {
|
|
*error = DW_DLE_SYMTAB_SECTION_ENTRYSIZE_ZERO;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
if (symtab_section_size%symtab_section_entrysize) {
|
|
*error = DW_DLE_SYMTAB_SECTION_LENGTH_ODD;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
for (i = 0; i < nrelas; i++) {
|
|
int res = update_entry(dbg, is_64bit,
|
|
endianess,
|
|
machine,
|
|
&(relas)[i],
|
|
target_section,
|
|
symtab_section,
|
|
symtab_section_size,
|
|
symtab_section_entrysize,
|
|
error);
|
|
if (res != DW_DLV_OK) {
|
|
return_res = res;
|
|
}
|
|
}
|
|
}
|
|
return return_res;
|
|
}
|
|
|
|
|
|
static int
|
|
loop_through_relocations(
|
|
Dwarf_Debug dbg,
|
|
dwarf_elf_object_access_internals_t* obj,
|
|
struct Dwarf_Section_s *relocatablesec,
|
|
int *error)
|
|
{
|
|
Dwarf_Small *target_section = 0;
|
|
Dwarf_Small *symtab_section = obj->symtab->dss_data;
|
|
Dwarf_Unsigned symtab_section_entrysize = obj->symtab->dss_entrysize;
|
|
Dwarf_Unsigned symtab_section_size = obj->symtab->dss_size;
|
|
Dwarf_Small *relocation_section = relocatablesec->dss_reloc_data;
|
|
Dwarf_Unsigned relocation_section_size =
|
|
relocatablesec->dss_reloc_size;
|
|
Dwarf_Unsigned relocation_section_entrysize = relocatablesec->dss_reloc_entrysize;
|
|
|
|
int ret = DW_DLV_ERROR;
|
|
struct Dwarf_Elf_Rela *relas = 0;
|
|
unsigned int nrelas = 0;
|
|
Dwarf_Small *mspace = 0;
|
|
|
|
ret = get_relocation_entries(obj->is_64bit,
|
|
obj->endianness,
|
|
obj->machine,
|
|
relocation_section,
|
|
relocation_section_size,
|
|
relocation_section_entrysize,
|
|
&relas, &nrelas, error);
|
|
if (ret != DW_DLV_OK) {
|
|
free(relas);
|
|
return ret;
|
|
}
|
|
|
|
if(!relocatablesec->dss_data_was_malloc) {
|
|
/* Some systems read Elf in read-only memory via mmap or the like.
|
|
So the only safe thing is to copy the current data into
|
|
malloc space and refer to the malloc space instead of the
|
|
space returned by the elf library */
|
|
mspace = malloc(relocatablesec->dss_size);
|
|
if (!mspace) {
|
|
*error = DW_DLE_RELOC_SECTION_MALLOC_FAIL;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
memcpy(mspace,relocatablesec->dss_data,relocatablesec->dss_size);
|
|
relocatablesec->dss_data = mspace;
|
|
target_section = relocatablesec->dss_data;
|
|
relocatablesec->dss_data_was_malloc = TRUE;
|
|
}
|
|
target_section = relocatablesec->dss_data;
|
|
ret = apply_rela_entries(
|
|
dbg,
|
|
obj->is_64bit,
|
|
obj->endianness, obj->machine,
|
|
target_section,
|
|
symtab_section,
|
|
symtab_section_size,
|
|
symtab_section_entrysize,
|
|
relas, nrelas, error);
|
|
free(relas);
|
|
return ret;
|
|
}
|
|
|
|
/* Find the section data in dbg and find all the relevant
|
|
sections. Then do relocations.
|
|
*/
|
|
static int
|
|
dwarf_elf_object_relocate_a_section(void* obj_in,
|
|
Dwarf_Half section_index,
|
|
Dwarf_Debug dbg,
|
|
int* error)
|
|
{
|
|
int res = DW_DLV_ERROR;
|
|
dwarf_elf_object_access_internals_t*obj = 0;
|
|
struct Dwarf_Section_s * relocatablesec = 0;
|
|
if (section_index == 0) {
|
|
return DW_DLV_NO_ENTRY;
|
|
}
|
|
obj = (dwarf_elf_object_access_internals_t*)obj_in;
|
|
|
|
/* The section to relocate must already be loaded into memory. */
|
|
res = find_section_to_relocate(dbg, section_index,&relocatablesec,error);
|
|
if (res != DW_DLV_OK) {
|
|
return res;
|
|
}
|
|
|
|
/* Sun and possibly others do not always set sh_link in .debug_* sections.
|
|
So we cannot do full consistency checks. */
|
|
if (relocatablesec->dss_reloc_index == 0 ) {
|
|
/* Something is wrong. */
|
|
*error = DW_DLE_RELOC_SECTION_MISSING_INDEX;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
/* Now load the relocations themselves. */
|
|
res = dwarf_elf_object_access_load_section(obj_in,
|
|
relocatablesec->dss_reloc_index,
|
|
&relocatablesec->dss_reloc_data, error);
|
|
if (res != DW_DLV_OK) {
|
|
return res;
|
|
}
|
|
|
|
/* Now get the symtab. */
|
|
if (!obj->symtab) {
|
|
obj->symtab = &dbg->de_elf_symtab;
|
|
obj->strtab = &dbg->de_elf_strtab;
|
|
}
|
|
if (obj->symtab->dss_index != relocatablesec->dss_reloc_link) {
|
|
/* Something is wrong. */
|
|
*error = DW_DLE_RELOC_MISMATCH_RELOC_INDEX;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
if (obj->strtab->dss_index != obj->symtab->dss_link) {
|
|
/* Something is wrong. */
|
|
*error = DW_DLE_RELOC_MISMATCH_STRTAB_INDEX;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
if (!obj->symtab->dss_data) {
|
|
/* Now load the symtab */
|
|
res = dwarf_elf_object_access_load_section(obj_in,
|
|
obj->symtab->dss_index,
|
|
&obj->symtab->dss_data, error);
|
|
if (res != DW_DLV_OK) {
|
|
return res;
|
|
}
|
|
}
|
|
if (!obj->strtab->dss_data) {
|
|
/* Now load the strtab */
|
|
res = dwarf_elf_object_access_load_section(obj_in,
|
|
obj->strtab->dss_index,
|
|
&obj->strtab->dss_data,error);
|
|
if (res != DW_DLV_OK){
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/* We have all the data we need in memory. */
|
|
res = loop_through_relocations(dbg,obj,relocatablesec,error);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* dwarf_elf_object_access_load_section()
|
|
We are only asked to load sections that
|
|
libdwarf really needs. */
|
|
static int
|
|
dwarf_elf_object_access_load_section(void* obj_in,
|
|
Dwarf_Half section_index,
|
|
Dwarf_Small** section_data,
|
|
int* error)
|
|
{
|
|
dwarf_elf_object_access_internals_t*obj =
|
|
(dwarf_elf_object_access_internals_t*)obj_in;
|
|
if (section_index == 0) {
|
|
return DW_DLV_NO_ENTRY;
|
|
}
|
|
|
|
{
|
|
Elf_Scn *scn = 0;
|
|
Elf_Data *data = 0;
|
|
|
|
scn = elf_getscn(obj->elf, section_index);
|
|
if (scn == NULL) {
|
|
*error = DW_DLE_MDE;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
/* When using libelf as a producer, section data may be stored
|
|
in multiple buffers. In libdwarf however, we only use libelf
|
|
as a consumer (there is a dwarf producer API, but it doesn't
|
|
use libelf). Because of this, this single call to elf_getdata
|
|
will retrieve the entire section in a single contiguous
|
|
buffer. */
|
|
data = elf_getdata(scn, NULL);
|
|
if (data == NULL) {
|
|
*error = DW_DLE_MDE;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
if (!data->d_buf) {
|
|
/* If NULL it means 'the section has no data'
|
|
according to libelf documentation.
|
|
No DWARF-related section should ever have
|
|
'no data'. Happens if a section type is
|
|
SHT_NOBITS and no section libdwarf
|
|
wants to look at should be SHT_NOBITS. */
|
|
*error = DW_DLE_MDE;
|
|
return DW_DLV_ERROR;
|
|
}
|
|
*section_data = data->d_buf;
|
|
}
|
|
return DW_DLV_OK;
|
|
}
|
|
|
|
|
|
/* dwarf_elf_access method table. */
|
|
static const struct Dwarf_Obj_Access_Methods_s dwarf_elf_object_access_methods =
|
|
{
|
|
dwarf_elf_object_access_get_section_info,
|
|
dwarf_elf_object_access_get_byte_order,
|
|
dwarf_elf_object_access_get_length_size,
|
|
dwarf_elf_object_access_get_pointer_size,
|
|
dwarf_elf_object_access_get_section_count,
|
|
dwarf_elf_object_access_load_section,
|
|
dwarf_elf_object_relocate_a_section
|
|
};
|
|
|
|
|
|
/* Interface for the ELF object file implementation.
|
|
On error this should set *err with the
|
|
libdwarf error code.
|
|
*/
|
|
int
|
|
dwarf_elf_object_access_init(dwarf_elf_handle elf,
|
|
int libdwarf_owns_elf,
|
|
Dwarf_Obj_Access_Interface** ret_obj,
|
|
int *err)
|
|
{
|
|
int res = 0;
|
|
dwarf_elf_object_access_internals_t *internals = 0;
|
|
Dwarf_Obj_Access_Interface *intfc = 0;
|
|
|
|
internals = malloc(sizeof(dwarf_elf_object_access_internals_t));
|
|
if (!internals) {
|
|
*err = DW_DLE_ALLOC_FAIL;
|
|
/* Impossible case, we hope. Give up. */
|
|
return DW_DLV_ERROR;
|
|
}
|
|
memset(internals,0,sizeof(*internals));
|
|
res = dwarf_elf_object_access_internals_init(internals, elf, err);
|
|
if (res != DW_DLV_OK){
|
|
/* *err is already set. */
|
|
free(internals);
|
|
return DW_DLV_ERROR;
|
|
}
|
|
internals->libdwarf_owns_elf = libdwarf_owns_elf;
|
|
|
|
intfc = malloc(sizeof(Dwarf_Obj_Access_Interface));
|
|
if (!intfc) {
|
|
/* Impossible case, we hope. Give up. */
|
|
*err = DW_DLE_ALLOC_FAIL;
|
|
free(internals);
|
|
return DW_DLV_ERROR;
|
|
}
|
|
/* Initialize the interface struct */
|
|
intfc->object = internals;
|
|
intfc->methods = &dwarf_elf_object_access_methods;
|
|
|
|
/* An access method hidden from non-elf. Needed to
|
|
handle new-ish SHF_COMPRESSED flag in elf. */
|
|
_dwarf_get_elf_flags_func_ptr = _dwarf_get_elf_flags_func;
|
|
|
|
|
|
*ret_obj = intfc;
|
|
return DW_DLV_OK;
|
|
}
|
|
|
|
|
|
|
|
/* Clean up the Dwarf_Obj_Access_Interface returned by elf_access_init. */
|
|
void
|
|
dwarf_elf_object_access_finish(Dwarf_Obj_Access_Interface* obj)
|
|
{
|
|
if (!obj) {
|
|
return;
|
|
}
|
|
if (obj->object) {
|
|
dwarf_elf_object_access_internals_t *internals =
|
|
(dwarf_elf_object_access_internals_t *)obj->object;
|
|
if (internals->libdwarf_owns_elf){
|
|
elf_end(internals->elf);
|
|
}
|
|
}
|
|
free(obj->object);
|
|
free(obj);
|
|
}
|
|
|
|
/* This function returns the Elf * pointer
|
|
associated with a Dwarf_Debug.
|
|
|
|
This function only makes sense if ELF is implied. */
|
|
int
|
|
dwarf_get_elf(Dwarf_Debug dbg, dwarf_elf_handle * elf,
|
|
Dwarf_Error * error)
|
|
{
|
|
struct Dwarf_Obj_Access_Interface_s * obj = 0;
|
|
if (dbg == NULL) {
|
|
_dwarf_error(NULL, error, DW_DLE_DBG_NULL);
|
|
return (DW_DLV_ERROR);
|
|
}
|
|
|
|
obj = dbg->de_obj_file;
|
|
if (obj) {
|
|
dwarf_elf_object_access_internals_t *internals =
|
|
(dwarf_elf_object_access_internals_t*)obj->object;
|
|
if (internals->elf == NULL) {
|
|
_dwarf_error(dbg, error, DW_DLE_FNO);
|
|
return (DW_DLV_ERROR);
|
|
}
|
|
*elf = internals->elf;
|
|
return DW_DLV_OK;
|
|
|
|
}
|
|
_dwarf_error(dbg, error, DW_DLE_FNO);
|
|
return DW_DLV_ERROR;
|
|
}
|
|
|
|
|