wakaama/core/utils.c
Lukas Woodtli 047f5dab5f Get rid of macro to specify LwM2M version 1.1
LwM2M version 1.1 is the default for Wakaama. We need only a macro for
the version 1.0 to handle special cases.
2024-08-21 20:57:08 +02:00

1158 lines
29 KiB
C

/*******************************************************************************
*
* Copyright (c) 2013, 2014 Intel Corporation and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v2.0
* and Eclipse Distribution License v1.0 which accompany this distribution.
*
* The Eclipse Public License is available at
* http://www.eclipse.org/legal/epl-v20.html
* The Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/edl-v10.php.
*
* Contributors:
* David Navarro, Intel Corporation - initial API and implementation
* Toby Jaffey - Please refer to git log
* Scott Bertin, AMETEK, Inc. - Please refer to git log
* Tuve Nordius, Husqvarna Group - Please refer to git log
*
*******************************************************************************/
/*
Copyright (c) 2013, 2014 Intel Corporation
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
David Navarro <david.navarro@intel.com>
*/
#include "internals.h"
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <float.h>
int utils_textToInt(const uint8_t * buffer,
int length,
int64_t * dataP)
{
uint64_t result = 0;
int sign = 1;
int i = 0;
if (0 == length) return 0;
if (buffer[0] == '-')
{
sign = -1;
i = 1;
}
while (i < length)
{
if ('0' <= buffer[i] && buffer[i] <= '9')
{
if (result > (UINT64_MAX / 10)) return 0;
result *= 10;
result += buffer[i] - '0';
}
else
{
return 0;
}
i++;
}
if (result > INT64_MAX + (uint64_t)(sign == -1 ? 1 : 0)) return 0;
if (sign == -1)
{
*dataP = 0 - result;
}
else
{
*dataP = result;
}
return 1;
}
int utils_textToUInt(const uint8_t * buffer,
int length,
uint64_t * dataP)
{
uint64_t result = 0;
int i = 0;
if (0 == length) return 0;
while (i < length)
{
if ('0' <= buffer[i] && buffer[i] <= '9')
{
if (result > (UINT64_MAX / 10)) return 0;
result *= 10;
result += buffer[i] - '0';
}
else
{
return 0;
}
i++;
}
*dataP = result;
return 1;
}
int utils_textToFloat(const uint8_t * buffer,
int length,
double * dataP,
bool allowExponential)
{
int ret = 0;
if (length == 0) {
return 0;
}
char *const buffer_c_str = lwm2m_malloc(length + 1);
char *tailptr;
if (!buffer_c_str) {
return 0;
}
memcpy(buffer_c_str, buffer, length);
buffer_c_str[length] = '\0';
if (!allowExponential && (strchr(buffer_c_str, 'e') != NULL || strchr(buffer_c_str, 'E') != NULL)) {
goto out;
}
*dataP = strtod(buffer_c_str, &tailptr);
if (tailptr == buffer_c_str) {
goto out;
}
ret = 1;
out:
lwm2m_free(buffer_c_str);
return ret;
}
int utils_textToObjLink(const uint8_t * buffer,
int length,
uint16_t * objectId,
uint16_t * objectInstanceId)
{
uint64_t object;
uint64_t instance;
int sep = 0;
while (sep < length
&& buffer[sep] != ':')
{
sep++;
}
if (sep == 0 || sep == length) return 0;
if (!utils_textToUInt(buffer, sep, &object)) return 0;
if (!utils_textToUInt(buffer + sep + 1,
length - sep - 1,
&instance)) return 0;
if (object > LWM2M_MAX_ID || instance > LWM2M_MAX_ID) return 0;
*objectId = (uint16_t)object;
*objectInstanceId = (uint16_t)instance;
return 1;
}
size_t utils_intToText(int64_t data,
uint8_t * string,
size_t length)
{
size_t result;
if (data < 0)
{
if (length == 0) return 0;
string[0] = '-';
/*
* Hack around the fact that -1 * INT64_MIN can not be represented as
* int64_t.
*/
if (data == INT64_MIN) {
const char *const int64_min_str = "-9223372036854775808";
const size_t int64_min_strlen = strlen(int64_min_str);
if (int64_min_strlen >= length) {
return 0;
}
memcpy(string, "-9223372036854775808", int64_min_strlen);
string[int64_min_strlen] = '\0';
return int64_min_strlen;
}
result = utils_uintToText(llabs(data), string + 1, length - 1);
if(result != 0)
{
result += 1;
}
}
else
{
result = utils_uintToText((uint64_t)data, string, length);
}
return result;
}
size_t utils_uintToText(uint64_t data,
uint8_t * string,
size_t length)
{
int index;
size_t result;
if (length == 0) return 0;
index = length - 1;
do
{
string[index] = '0' + data%10;
data /= 10;
index --;
} while (index >= 0 && data > 0);
if (data > 0) return 0;
index++;
result = length - index;
if (result < length)
{
memmove(string, string + index, result);
string[result] = '\0';
}
return result;
}
size_t utils_floatToText(double data,
uint8_t * string,
size_t length,
bool allowExponential)
{
uint64_t intPart;
double decPart;
double noiseFloor;
double roundCheck;
size_t res;
size_t head = 0;
int zeros = 0; /* positive for trailing, negative for leading */
uint8_t expLen = 0;
int precisionFactor = 1; /* Adjusts for inaccuracies caused by power of 10 operations. */
unsigned digits;
if (!length || !string) return 0;
if (data < 0)
{
string[head++] = '-';
data = -data;
}
/* Handle special cases */
if (data < DBL_MIN)
{
/* Intentionally not distinguishing between +0.0 and -0.0. */
if (length < 3) return 0;
string[0] = '0';
string[1] = '.';
string[2] = '0';
if (length > 3) string[3] = '\0';
return 3;
}
else if (data > DBL_MAX )
{
/* Note that this is not valid for JSON. */
if (length < 3 + head) return 0;
string[head++] = 'i';
string[head++] = 'n';
string[head++] = 'f';
if (length > head) string[head] = '\0';
return head;
}
else if (isnan(data))
{
/* NaN */
/* Note that this is not valid for JSON. */
if (length < 3 + head) return 0;
string[head++] = 'n';
string[head++] = 'a';
string[head++] = 'n';
if (length > head) string[head] = '\0';
return head;
}
/* Scale to usable range. Assumes DBL_DIG is 15 (IEEE 754 double) */
if (data > 1e15)
{
while (data > 1e100)
{
data *= 1e-100;
zeros += 100;
precisionFactor++;
}
if (allowExponential)
{
/* Take data down below 10 so only 1 digit before the decimal point */
while (data > 1e10)
{
data *= 1e-10;
zeros += 10;
precisionFactor++;
}
while (data > 10)
{
data *= 0.1;
zeros += 1;
precisionFactor++;
}
if (zeros >= 100)
{
expLen = 4;
}
else if(zeros >= 10)
{
expLen = 3;
}
else
{
expLen = 2;
}
}
else
{
/* Take data down to 15 significant digits before 0s. */
while (data >= 1e25)
{
data *= 1e-10;
zeros += 10;
precisionFactor++;
}
while (data > 1e15)
{
data *= 0.1;
zeros += 1;
precisionFactor++;
}
/* Account for lost digits of precision */
if (precisionFactor >= 19)
{
data *= 0.01;
zeros += 2;
precisionFactor++;
}
else if (precisionFactor >= 10)
{
data *= 0.1;
zeros += 1;
precisionFactor++;
}
}
}
/* Exponential notation will add at least 3 characters. Make sure we save
* at least that many 0s. */
else if (data < (allowExponential ? 1e-3 : 0.1))
{
/* For exponential notation take data to between 1 and 10, excluding 10.
* Otherwise take data to between 0.1 and 1, excluding 1. */
while (data < 1e-100)
{
data *= 1e100;
zeros -= 100;
precisionFactor++;
}
while (data < 1e-10)
{
data *= 1e10;
zeros -= 10;
precisionFactor++;
}
while (data < (allowExponential ? 1 : 0.1))
{
data *= 10;
zeros -= 1;
precisionFactor++;
}
if (allowExponential)
{
if (zeros <= -100)
{
expLen = 5;
}
else if(zeros <= -10)
{
expLen = 4;
}
else
{
expLen = 3;
}
}
}
noiseFloor = DBL_EPSILON * precisionFactor;
/* Adjust the noise floor to account for digits left of the decimal point. */
intPart = (uint64_t)data;
if (!intPart)
{
/* Leading 0 and decimal point */
digits = 2;
}
else
{
/* Decimal point */
digits = 1;
}
while (intPart > 0)
{
noiseFloor *= 10;
intPart /= 10;
digits++;
}
intPart = (uint64_t)data;
decPart = data - intPart;
if (!allowExponential && zeros > 0)
{
/* Ensure all significant digits are left of the zeros */
while (zeros > 0 && noiseFloor < 1)
{
decPart *= 10;
intPart = intPart * 10 + (unsigned)decPart;
decPart -= (unsigned)decPart;
zeros--;
noiseFloor *= 10;
digits++;
}
decPart = 0;
}
if (decPart > noiseFloor)
{
/* Add 1 to the decimal part so we don't lose leading 0s. */
decPart += 1;
/* Limit the number of digits to space in the buffer and round. */
roundCheck = 2;
do
{
digits++;
if (head + expLen + digits > length) break;
decPart *= 10;
roundCheck *= 10;
noiseFloor *= 10;
} while (decPart - (uint64_t)decPart > noiseFloor);
decPart += 0.5;
if (decPart >= roundCheck)
{
intPart += 1;
}
}
/* Put out the significant digits left of the decimal point or zeros. */
res = utils_uintToText(intPart, string + head, length - head);
if (res == 0) return 0;
head += res;
if (decPart <= noiseFloor
|| (!allowExponential && -zeros >= (int)(length - head)))
{
/* Only 0s right of the significant digits */
if (!allowExponential && zeros > 0)
{
if (head + zeros > length) return 0;
memset(string + head, '0', zeros);
head += zeros;
}
/* Add as much of ".0" as space permits */
if (head < length) string[head++] = '.';
if (head < length) string[head++] = '0';
if (head < length) string[head] = '\0';
return head;
}
if (!allowExponential && zeros < 0)
{
/* Add "." plus leading 0s. Leaving one off to be added back later. */
if (head - zeros > length) return 0;
string[head] = '.';
if (zeros < -1) memset(string + head + 1, '0', -(zeros) - 1);
head -= zeros;
}
/* Digits for the fractional part. */
res = utils_uintToText((uint64_t)decPart, string + head, length - head);
if (!res) return 0;
// replace the leading 1 with a decimal point or 0
if (!allowExponential && zeros < 0)
{
string[head] = '0';
}
else
{
string[head] = '.';
}
head += res;
if (allowExponential && zeros)
{
if (head + expLen > length) return 0;
string[head++] = 'e';
res = utils_intToText(zeros, string + head, length - head);
if (res == 0) return 0;
head += res;
}
return head;
}
size_t utils_objLinkToText(uint16_t objectId,
uint16_t objectInstanceId,
uint8_t * string,
size_t length)
{
size_t head;
size_t res = utils_uintToText(objectId, string, length);
if (!res) return 0;
head = res;
if (length - head < 1) return 0;
string[head++] = ':';
res = utils_uintToText(objectInstanceId, string + head, length - head);
if (!res) return 0;
return head + res;
}
lwm2m_version_t utils_stringToVersion(uint8_t * buffer,
size_t length)
{
if (length == 0) return VERSION_MISSING;
if (length != 3) return VERSION_UNRECOGNIZED;
if (buffer[1] != '.') return VERSION_UNRECOGNIZED;
switch (buffer[0])
{
case '1':
switch (buffer[2])
{
case '0':
return VERSION_1_0;
case '1':
return VERSION_1_1;
default:
break;
}
break;
default:
break;
}
return VERSION_UNRECOGNIZED;
}
lwm2m_binding_t utils_stringToBinding(uint8_t * buffer,
size_t length)
{
#ifdef LWM2M_VERSION_1_0
if (length == 0) return BINDING_UNKNOWN;
switch (buffer[0])
{
case 'U':
switch (length)
{
case 1:
return BINDING_U;
case 2:
switch (buffer[1])
{
case 'Q':
return BINDING_UQ;
case 'S':
return BINDING_US;
default:
break;
}
break;
case 3:
if (buffer[1] == 'Q' && buffer[2] == 'S')
{
return BINDING_UQS;
}
break;
default:
break;
}
break;
case 'S':
switch (length)
{
case 1:
return BINDING_S;
case 2:
if (buffer[1] == 'Q')
{
return BINDING_SQ;
}
break;
default:
break;
}
break;
default:
break;
}
return BINDING_UNKNOWN;
#else
size_t i;
lwm2m_binding_t binding = BINDING_UNKNOWN;
for (i = 0; i < length; i++)
{
switch (buffer[i])
{
case 'N':
binding |= BINDING_N;
break;
case 'Q':
binding |= BINDING_Q;
break;
case 'S':
binding |= BINDING_S;
break;
case 'T':
binding |= BINDING_T;
break;
case 'U':
binding |= BINDING_U;
break;
default:
return BINDING_UNKNOWN;
}
}
return binding;
#endif
}
lwm2m_media_type_t utils_convertMediaType(coap_content_type_t type)
{
lwm2m_media_type_t result = LWM2M_CONTENT_TEXT;
// Here we just check the content type is a valid value for LWM2M
switch((uint16_t)type)
{
case TEXT_PLAIN:
break;
case APPLICATION_OCTET_STREAM:
result = LWM2M_CONTENT_OPAQUE;
break;
#ifdef LWM2M_OLD_CONTENT_FORMAT_SUPPORT
case LWM2M_CONTENT_TLV_OLD:
result = LWM2M_CONTENT_TLV_OLD;
break;
#endif
case LWM2M_CONTENT_TLV:
result = LWM2M_CONTENT_TLV;
break;
#ifdef LWM2M_OLD_CONTENT_FORMAT_SUPPORT
case LWM2M_CONTENT_JSON_OLD:
result = LWM2M_CONTENT_JSON_OLD;
break;
#endif
case LWM2M_CONTENT_JSON:
result = LWM2M_CONTENT_JSON;
break;
case LWM2M_CONTENT_SENML_JSON:
result = LWM2M_CONTENT_SENML_JSON;
break;
case LWM2M_CONTENT_CBOR:
result = LWM2M_CONTENT_CBOR;
break;
case LWM2M_CONTENT_SENML_CBOR:
result = LWM2M_CONTENT_SENML_CBOR;
break;
case APPLICATION_LINK_FORMAT:
result = LWM2M_CONTENT_LINK;
break;
default:
break;
}
return result;
}
uint8_t utils_getResponseFormat(uint8_t accept_num,
const uint16_t *accept,
int numData,
const lwm2m_data_t *dataP,
bool singleResource,
lwm2m_media_type_t *format)
{
uint8_t result = COAP_205_CONTENT;
bool singular;
if (numData == 1)
{
switch (dataP->type)
{
case LWM2M_TYPE_OBJECT:
case LWM2M_TYPE_OBJECT_INSTANCE:
case LWM2M_TYPE_MULTIPLE_RESOURCE:
singular = false;
break;
default:
singular = singleResource;
break;
}
}
else
{
singular = singleResource;
}
*format = LWM2M_CONTENT_TEXT;
if (accept_num > 0)
{
uint8_t i;
bool found = false;
for(i = 0; i < accept_num && !found; i++)
{
switch (accept[i])
{
case TEXT_PLAIN:
if (singular)
{
found = true;
}
break;
case APPLICATION_OCTET_STREAM:
if (singular)
{
*format = LWM2M_CONTENT_OPAQUE;
found = true;
}
break;
#ifdef LWM2M_SUPPORT_TLV
#ifdef LWM2M_OLD_CONTENT_FORMAT_SUPPORT
case LWM2M_CONTENT_TLV_OLD:
*format = LWM2M_CONTENT_TLV_OLD;
found = true;
break;
#endif
case LWM2M_CONTENT_TLV:
*format = LWM2M_CONTENT_TLV;
found = true;
break;
#endif
#ifdef LWM2M_SUPPORT_JSON
#ifdef LWM2M_OLD_CONTENT_FORMAT_SUPPORT
case LWM2M_CONTENT_JSON_OLD:
*format = LWM2M_CONTENT_JSON_OLD;
found = true;
break;
#endif
case LWM2M_CONTENT_JSON:
*format = LWM2M_CONTENT_JSON;
found = true;
break;
#endif
#ifdef LWM2M_SUPPORT_SENML_JSON
case LWM2M_CONTENT_SENML_JSON:
*format = LWM2M_CONTENT_SENML_JSON;
found = true;
break;
#endif
#ifdef LWM2M_SUPPORT_SENML_CBOR
#ifdef LWM2M_VERSION_1_0
case LWM2M_CONTENT_CBOR:
if (singular) {
*format = LWM2M_CONTENT_CBOR;
found = true;
}
break;
#endif
case LWM2M_CONTENT_SENML_CBOR:
*format = LWM2M_CONTENT_SENML_CBOR;
found = true;
break;
#endif
default:
break;
}
}
if (!found) result = COAP_406_NOT_ACCEPTABLE;
} else if (singular) {
*format = LWM2M_CONTENT_TEXT;
} else {
#if defined(LWM2M_SUPPORT_SENML_CBOR)
*format = LWM2M_CONTENT_SENML_CBOR;
#elif defined(LWM2M_SUPPORT_SENML_JSON)
*format = LWM2M_CONTENT_SENML_JSON;
#elif defined(LWM2M_SUPPORT_JSON)
*format = LWM2M_CONTENT_JSON;
#elif defined(LWM2M_SUPPORT_TLV)
*format = LWM2M_CONTENT_TLV;
#else
result = COAP_500_INTERNAL_SERVER_ERROR;
#endif
}
return result;
}
#ifdef LWM2M_CLIENT_MODE
lwm2m_server_t * utils_findServer(lwm2m_context_t * contextP,
void * fromSessionH)
{
lwm2m_server_t * targetP;
targetP = contextP->serverList;
while (targetP != NULL
&& false == lwm2m_session_is_equal(targetP->sessionH, fromSessionH, contextP->userData))
{
targetP = targetP->next;
}
return targetP;
}
#endif
lwm2m_server_t * utils_findBootstrapServer(lwm2m_context_t * contextP,
void * fromSessionH)
{
#ifdef LWM2M_CLIENT_MODE
lwm2m_server_t * targetP;
targetP = contextP->bootstrapServerList;
while (targetP != NULL
&& false == lwm2m_session_is_equal(targetP->sessionH, fromSessionH, contextP->userData))
{
targetP = targetP->next;
}
return targetP;
#else
return NULL;
#endif
}
#if defined(LWM2M_SERVER_MODE) || defined(LWM2M_BOOTSTRAP_SERVER_MODE)
lwm2m_client_t * utils_findClient(lwm2m_context_t * contextP,
void * fromSessionH)
{
lwm2m_client_t * targetP;
targetP = contextP->clientList;
while (targetP != NULL
&& false == lwm2m_session_is_equal(targetP->sessionH, fromSessionH, contextP->userData))
{
targetP = targetP->next;
}
return targetP;
}
#endif
int utils_isAltPathValid(const char * altPath)
{
int i;
if (altPath == NULL) return 0;
if (altPath[0] != '/') return 0;
for (i = 1 ; altPath[i] != 0 ; i++)
{
// TODO: Support multi-segment alternative path
if (altPath[i] == '/') return 0;
// TODO: Check needs for sub-delims, ':' and '@'
if ((altPath[i] < 'A' || altPath[i] > 'Z') // ALPHA
&& (altPath[i] < 'a' || altPath[i] > 'z')
&& (altPath[i] < '0' || altPath[i] > '9') // DIGIT
&& (altPath[i] != '-') // Other unreserved
&& (altPath[i] != '.')
&& (altPath[i] != '_')
&& (altPath[i] != '~')
&& (altPath[i] != '%')) // pct_encoded
{
return 0;
}
}
return 1;
}
// copy a string in a buffer.
// return the number of copied bytes or -1 if the buffer is not large enough
int utils_stringCopy(char * buffer,
size_t length,
const char * str)
{
size_t i;
for (i = 0 ; i < length && str[i] != 0 ; i++)
{
buffer[i] = str[i];
}
if (i == length) return -1;
buffer[i] = 0;
return (int)i;
}
void utils_copyValue(void * dst,
const void * src,
size_t len)
{
#ifdef LWM2M_BIG_ENDIAN
memcpy(dst, src, len);
#else
#ifdef LWM2M_LITTLE_ENDIAN
size_t i;
for (i = 0; i < len; i++)
{
((uint8_t *)dst)[i] = ((uint8_t *)src)[len - 1 - i];
}
#endif
#endif
}
#define PRV_B64_PADDING '='
static char b64Alphabet[64] =
{
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/'
};
static void prv_encodeBlock(const uint8_t input[3],
uint8_t output[4])
{
output[0] = b64Alphabet[input[0] >> 2];
output[1] = b64Alphabet[((input[0] & 0x03) << 4) | (input[1] >> 4)];
output[2] = b64Alphabet[((input[1] & 0x0F) << 2) | (input[2] >> 6)];
output[3] = b64Alphabet[input[2] & 0x3F];
}
size_t utils_base64GetSize(size_t dataLen)
{
size_t result_len;
result_len = 4 * (dataLen / 3);
if (dataLen % 3) result_len += 4;
return result_len;
}
size_t utils_base64Encode(const uint8_t * dataP,
size_t dataLen,
uint8_t * bufferP,
size_t bufferLen)
{
unsigned int data_index;
unsigned int result_index;
size_t result_len;
result_len = utils_base64GetSize(dataLen);
if (result_len > bufferLen) return 0;
data_index = 0;
result_index = 0;
while (data_index < dataLen)
{
switch (dataLen - data_index)
{
case 0:
// should never happen
break;
case 1:
bufferP[result_index] = b64Alphabet[dataP[data_index] >> 2];
bufferP[result_index + 1] = b64Alphabet[(dataP[data_index] & 0x03) << 4];
bufferP[result_index + 2] = PRV_B64_PADDING;
bufferP[result_index + 3] = PRV_B64_PADDING;
break;
case 2:
bufferP[result_index] = b64Alphabet[dataP[data_index] >> 2];
bufferP[result_index + 1] = b64Alphabet[(dataP[data_index] & 0x03) << 4 | (dataP[data_index + 1] >> 4)];
bufferP[result_index + 2] = b64Alphabet[(dataP[data_index + 1] & 0x0F) << 2];
bufferP[result_index + 3] = PRV_B64_PADDING;
break;
default:
prv_encodeBlock(dataP + data_index, bufferP + result_index);
break;
}
data_index += 3;
result_index += 4;
}
return result_len;
}
size_t utils_base64GetDecodedSize(const char * dataP, size_t dataLen)
{
size_t result;
result = 3 * (dataLen / 4);
switch (dataLen % 4)
{
case 0:
if (result > 0)
{
/* Account for any padding */
if (dataP[dataLen - 2] == PRV_B64_PADDING)
result -= 2;
else if (dataP[dataLen - 1] == PRV_B64_PADDING)
result -= 1;
}
break;
case 2:
result += 1;
break;
case 3:
result += 2;
break;
default:
/* Should never happen */
break;
}
return result;
}
static uint8_t prv_base64Value(char digit)
{
uint8_t result = 0xFF;
if (digit >= 'A' && digit <= 'Z') result = digit - 'A';
else if (digit >= 'a' && digit <= 'z') result = digit - 'a' + 26;
else if (digit >= '0' && digit <= '9') result = digit - '0' + 52;
else if (digit == '+') result = 62;
else if (digit == '/') result = 63;
return result;
}
size_t utils_base64Decode(const char * dataP, size_t dataLen, uint8_t * bufferP, size_t bufferLen)
{
size_t dataIndex;
size_t bufferIndex;
size_t decodedSize = utils_base64GetDecodedSize(dataP, dataLen);
if(decodedSize > bufferLen) return 0;
dataIndex = 0;
bufferIndex = 0;
while (dataIndex < dataLen)
{
uint8_t v1, v2, v3, v4;
if (dataLen - dataIndex < 2) return 0;
v1 = prv_base64Value(dataP[dataIndex++]);
if (v1 >= 64) return 0;
v2 = prv_base64Value(dataP[dataIndex++]);
if (v2 >= 64) return 0;
bufferP[bufferIndex++] = (v1 << 2) + (v2 >> 4);
if (dataIndex < dataLen)
{
if (dataP[dataIndex] != PRV_B64_PADDING)
{
v3 = prv_base64Value(dataP[dataIndex++]);
if (v3 >= 64) return 0;
bufferP[bufferIndex++] = (v2 << 4) + (v3 >> 2);
if (dataIndex < dataLen)
{
if (dataP[dataIndex] != PRV_B64_PADDING)
{
v4 = prv_base64Value(dataP[dataIndex++]);
if (v4 >= 64) return 0;
bufferP[bufferIndex++] = (v3 << 6) + v4;
}
else
{
if (bufferIndex != decodedSize) return 0;
dataIndex++;
}
}
}
else
{
if (bufferIndex != decodedSize) return 0;
dataIndex+=2;
}
}
}
return decodedSize;
}
lwm2m_data_type_t utils_depthToDatatype(uri_depth_t depth)
{
switch (depth)
{
case URI_DEPTH_OBJECT:
return LWM2M_TYPE_OBJECT;
case URI_DEPTH_OBJECT_INSTANCE:
return LWM2M_TYPE_OBJECT_INSTANCE;
default:
break;
}
return LWM2M_TYPE_UNDEFINED;
}