// Copyright 2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "util_assert.h" #include #include "esp_sha.h" #include "esp_log.h" #define UL64(x) x##ULL #define F0(x, y, z) ((x & y) | (z & (x | y))) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define SHR(x, n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x, n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define TAG "SHA" static const uint32_t sha_padding[] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; const uint32_t __g_esp_sha1_state_ctx[] = { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0 }; const uint32_t __g_esp_sha224_state_ctx[] = { 0xC1059ED8, 0x367CD507, 0x3070DD17, 0xF70E5939, 0xFFC00B31, 0x68581511, 0x64F98FA7, 0xBEFA4FA4 }; const uint32_t __g_esp_sha256_state_ctx[] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; const uint64_t __g_esp_sha384_state_ctx[] = { 0xCBBB9D5DC1059ED8, 0x629A292A367CD507, 0x9159015A3070DD17, 0x152FECD8F70E5939, 0x67332667FFC00B31, 0x8EB44A8768581511, 0xDB0C2E0D64F98FA7, 0x47B5481DBEFA4FA4 }; const uint64_t __g_esp_sha512_state_ctx[] = { 0x6A09E667F3BCC908, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F, 0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179 }; static void esp_sha_put_be(void *dest, const void *src, size_t size, size_t steps) { uint8_t *d_buf = (uint8_t *)dest; const uint8_t *s_buf = (const uint8_t *)src; for (int i = 0; i < size; i += steps) { for (int j = 0; j < steps; j++) { d_buf[i + j] = s_buf[i + (steps - j - 1)]; } } } int __esp_sha1_process(void *in_ctx, const void *src) { const uint8_t *data = (const uint8_t *)src; esp_sha_t *ctx = (esp_sha_t *)in_ctx; uint32_t temp, W[16], A[5]; esp_sha_put_be(W, data, 64, sizeof(uint32_t)); #undef S #undef R #undef P #undef F #undef K #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n))) #define R(t) \ ( \ temp = W[( t - 3 ) & 0x0F] ^ W[( t - 8 ) & 0x0F] ^ \ W[( t - 14 ) & 0x0F] ^ W[ t & 0x0F], \ ( W[t & 0x0F] = S(temp,1) ) \ ) #define P(a,b,c,d,e,x) \ { \ e += S(a,5) + F(b,c,d) + K + x; b = S(b,30); \ } for (int i = 0; i < 5; i++) A[i] = ctx->state[i]; #define F(x,y,z) (z ^ (x & (y ^ z))) #define K 0x5A827999 P( A[0], A[1], A[2], A[3], A[4], W[0] ); P( A[4], A[0], A[1], A[2], A[3], W[1] ); P( A[3], A[4], A[0], A[1], A[2], W[2] ); P( A[2], A[3], A[4], A[0], A[1], W[3] ); P( A[1], A[2], A[3], A[4], A[0], W[4] ); P( A[0], A[1], A[2], A[3], A[4], W[5] ); P( A[4], A[0], A[1], A[2], A[3], W[6] ); P( A[3], A[4], A[0], A[1], A[2], W[7] ); P( A[2], A[3], A[4], A[0], A[1], W[8] ); P( A[1], A[2], A[3], A[4], A[0], W[9] ); P( A[0], A[1], A[2], A[3], A[4], W[10] ); P( A[4], A[0], A[1], A[2], A[3], W[11] ); P( A[3], A[4], A[0], A[1], A[2], W[12] ); P( A[2], A[3], A[4], A[0], A[1], W[13] ); P( A[1], A[2], A[3], A[4], A[0], W[14] ); P( A[0], A[1], A[2], A[3], A[4], W[15] ); P( A[4], A[0], A[1], A[2], A[3], R(16) ); P( A[3], A[4], A[0], A[1], A[2], R(17) ); P( A[2], A[3], A[4], A[0], A[1], R(18) ); P( A[1], A[2], A[3], A[4], A[0], R(19) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0x6ED9EBA1 P( A[0], A[1], A[2], A[3], A[4], R(20) ); P( A[4], A[0], A[1], A[2], A[3], R(21) ); P( A[3], A[4], A[0], A[1], A[2], R(22) ); P( A[2], A[3], A[4], A[0], A[1], R(23) ); P( A[1], A[2], A[3], A[4], A[0], R(24) ); P( A[0], A[1], A[2], A[3], A[4], R(25) ); P( A[4], A[0], A[1], A[2], A[3], R(26) ); P( A[3], A[4], A[0], A[1], A[2], R(27) ); P( A[2], A[3], A[4], A[0], A[1], R(28) ); P( A[1], A[2], A[3], A[4], A[0], R(29) ); P( A[0], A[1], A[2], A[3], A[4], R(30) ); P( A[4], A[0], A[1], A[2], A[3], R(31) ); P( A[3], A[4], A[0], A[1], A[2], R(32) ); P( A[2], A[3], A[4], A[0], A[1], R(33) ); P( A[1], A[2], A[3], A[4], A[0], R(34) ); P( A[0], A[1], A[2], A[3], A[4], R(35) ); P( A[4], A[0], A[1], A[2], A[3], R(36) ); P( A[3], A[4], A[0], A[1], A[2], R(37) ); P( A[2], A[3], A[4], A[0], A[1], R(38) ); P( A[1], A[2], A[3], A[4], A[0], R(39) ); #undef K #undef F #define F(x,y,z) ((x & y) | (z & (x | y))) #define K 0x8F1BBCDC P( A[0], A[1], A[2], A[3], A[4], R(40) ); P( A[4], A[0], A[1], A[2], A[3], R(41) ); P( A[3], A[4], A[0], A[1], A[2], R(42) ); P( A[2], A[3], A[4], A[0], A[1], R(43) ); P( A[1], A[2], A[3], A[4], A[0], R(44) ); P( A[0], A[1], A[2], A[3], A[4], R(45) ); P( A[4], A[0], A[1], A[2], A[3], R(46) ); P( A[3], A[4], A[0], A[1], A[2], R(47) ); P( A[2], A[3], A[4], A[0], A[1], R(48) ); P( A[1], A[2], A[3], A[4], A[0], R(49) ); P( A[0], A[1], A[2], A[3], A[4], R(50) ); P( A[4], A[0], A[1], A[2], A[3], R(51) ); P( A[3], A[4], A[0], A[1], A[2], R(52) ); P( A[2], A[3], A[4], A[0], A[1], R(53) ); P( A[1], A[2], A[3], A[4], A[0], R(54) ); P( A[0], A[1], A[2], A[3], A[4], R(55) ); P( A[4], A[0], A[1], A[2], A[3], R(56) ); P( A[3], A[4], A[0], A[1], A[2], R(57) ); P( A[2], A[3], A[4], A[0], A[1], R(58) ); P( A[1], A[2], A[3], A[4], A[0], R(59) ); #undef K #undef F #define F(x,y,z) (x ^ y ^ z) #define K 0xCA62C1D6 P( A[0], A[1], A[2], A[3], A[4], R(60) ); P( A[4], A[0], A[1], A[2], A[3], R(61) ); P( A[3], A[4], A[0], A[1], A[2], R(62) ); P( A[2], A[3], A[4], A[0], A[1], R(63) ); P( A[1], A[2], A[3], A[4], A[0], R(64) ); P( A[0], A[1], A[2], A[3], A[4], R(65) ); P( A[4], A[0], A[1], A[2], A[3], R(66) ); P( A[3], A[4], A[0], A[1], A[2], R(67) ); P( A[2], A[3], A[4], A[0], A[1], R(68) ); P( A[1], A[2], A[3], A[4], A[0], R(69) ); P( A[0], A[1], A[2], A[3], A[4], R(70) ); P( A[4], A[0], A[1], A[2], A[3], R(71) ); P( A[3], A[4], A[0], A[1], A[2], R(72) ); P( A[2], A[3], A[4], A[0], A[1], R(73) ); P( A[1], A[2], A[3], A[4], A[0], R(74) ); P( A[0], A[1], A[2], A[3], A[4], R(75) ); P( A[4], A[0], A[1], A[2], A[3], R(76) ); P( A[3], A[4], A[0], A[1], A[2], R(77) ); P( A[2], A[3], A[4], A[0], A[1], R(78) ); P( A[1], A[2], A[3], A[4], A[0], R(79) ); #undef K #undef F #undef R #undef P for (int i = 0; i < 5; i++) ctx->state[i] += A[i]; return 0; } int __esp_sha256_process(void *in_ctx, const void *src) { const uint8_t *data = (const uint8_t *)src; esp_sha_t *ctx = (esp_sha_t *)in_ctx; uint32_t temp1, temp2, W[64]; uint32_t A[8]; #undef R #undef P #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a, b, c, d, e, f, g, h, x, K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } static const uint32_t K[] = { 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, }; for (int i = 0; i < 8; i++) A[i] = ctx->state[i]; for (int i = 0; i < 64; i++) { if (i < 16) esp_sha_put_be(&W[i], data + 4 * i, 4, sizeof(uint32_t)); else R(i); P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i]); temp1 = A[7]; A[7] = A[6]; A[6] = A[5]; A[5] = A[4]; A[4] = A[3]; A[3] = A[2]; A[2] = A[1]; A[1] = A[0]; A[0] = temp1; } for (int i = 0; i < 8; i++) ctx->state[i] += A[i]; return 0; #undef R #undef P } int __esp_sha512_process(void *in_ctx, const void *src) { int i; uint64_t temp1, temp2, W[80]; uint64_t A[8]; const uint8_t *data = (const uint8_t *)src; esp_sha512_t *ctx = (esp_sha512_t *)in_ctx; static const uint64_t K[80] = { UL64(0x428A2F98D728AE22), UL64(0x7137449123EF65CD), UL64(0xB5C0FBCFEC4D3B2F), UL64(0xE9B5DBA58189DBBC), UL64(0x3956C25BF348B538), UL64(0x59F111F1B605D019), UL64(0x923F82A4AF194F9B), UL64(0xAB1C5ED5DA6D8118), UL64(0xD807AA98A3030242), UL64(0x12835B0145706FBE), UL64(0x243185BE4EE4B28C), UL64(0x550C7DC3D5FFB4E2), UL64(0x72BE5D74F27B896F), UL64(0x80DEB1FE3B1696B1), UL64(0x9BDC06A725C71235), UL64(0xC19BF174CF692694), UL64(0xE49B69C19EF14AD2), UL64(0xEFBE4786384F25E3), UL64(0x0FC19DC68B8CD5B5), UL64(0x240CA1CC77AC9C65), UL64(0x2DE92C6F592B0275), UL64(0x4A7484AA6EA6E483), UL64(0x5CB0A9DCBD41FBD4), UL64(0x76F988DA831153B5), UL64(0x983E5152EE66DFAB), UL64(0xA831C66D2DB43210), UL64(0xB00327C898FB213F), UL64(0xBF597FC7BEEF0EE4), UL64(0xC6E00BF33DA88FC2), UL64(0xD5A79147930AA725), UL64(0x06CA6351E003826F), UL64(0x142929670A0E6E70), UL64(0x27B70A8546D22FFC), UL64(0x2E1B21385C26C926), UL64(0x4D2C6DFC5AC42AED), UL64(0x53380D139D95B3DF), UL64(0x650A73548BAF63DE), UL64(0x766A0ABB3C77B2A8), UL64(0x81C2C92E47EDAEE6), UL64(0x92722C851482353B), UL64(0xA2BFE8A14CF10364), UL64(0xA81A664BBC423001), UL64(0xC24B8B70D0F89791), UL64(0xC76C51A30654BE30), UL64(0xD192E819D6EF5218), UL64(0xD69906245565A910), UL64(0xF40E35855771202A), UL64(0x106AA07032BBD1B8), UL64(0x19A4C116B8D2D0C8), UL64(0x1E376C085141AB53), UL64(0x2748774CDF8EEB99), UL64(0x34B0BCB5E19B48A8), UL64(0x391C0CB3C5C95A63), UL64(0x4ED8AA4AE3418ACB), UL64(0x5B9CCA4F7763E373), UL64(0x682E6FF3D6B2B8A3), UL64(0x748F82EE5DEFB2FC), UL64(0x78A5636F43172F60), UL64(0x84C87814A1F0AB72), UL64(0x8CC702081A6439EC), UL64(0x90BEFFFA23631E28), UL64(0xA4506CEBDE82BDE9), UL64(0xBEF9A3F7B2C67915), UL64(0xC67178F2E372532B), UL64(0xCA273ECEEA26619C), UL64(0xD186B8C721C0C207), UL64(0xEADA7DD6CDE0EB1E), UL64(0xF57D4F7FEE6ED178), UL64(0x06F067AA72176FBA), UL64(0x0A637DC5A2C898A6), UL64(0x113F9804BEF90DAE), UL64(0x1B710B35131C471B), UL64(0x28DB77F523047D84), UL64(0x32CAAB7B40C72493), UL64(0x3C9EBE0A15C9BEBC), UL64(0x431D67C49C100D4C), UL64(0x4CC5D4BECB3E42B6), UL64(0x597F299CFC657E2A), UL64(0x5FCB6FAB3AD6FAEC), UL64(0x6C44198C4A475817) }; #undef SHR #undef ROTR #undef S0 #undef S1 #undef S2 #undef S3 #undef F0 #undef F1 #undef P #define SHR(x,n) (x >> n) #define ROTR(x,n) (SHR(x,n) | (x << (64 - n))) #define S0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7)) #define S1(x) (ROTR(x,19) ^ ROTR(x,61) ^ SHR(x, 6)) #define S2(x) (ROTR(x,28) ^ ROTR(x,34) ^ ROTR(x,39)) #define S3(x) (ROTR(x,14) ^ ROTR(x,18) ^ ROTR(x,41)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } for (i = 0; i < 16; i++) { esp_sha_put_be(&W[i], data + (i << 3), sizeof(uint64_t), sizeof(uint64_t)); } for (; i < 80; i++) { W[i] = S1(W[i - 2]) + W[i - 7] + S0(W[i - 15]) + W[i - 16]; } for (int j = 0; j < 8; j++) A[j] = ctx->state[j]; i = 0; do { P( A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i] ); i++; P( A[7], A[0], A[1], A[2], A[3], A[4], A[5], A[6], W[i], K[i] ); i++; P( A[6], A[7], A[0], A[1], A[2], A[3], A[4], A[5], W[i], K[i] ); i++; P( A[5], A[6], A[7], A[0], A[1], A[2], A[3], A[4], W[i], K[i] ); i++; P( A[4], A[5], A[6], A[7], A[0], A[1], A[2], A[3], W[i], K[i] ); i++; P( A[3], A[4], A[5], A[6], A[7], A[0], A[1], A[2], W[i], K[i] ); i++; P( A[2], A[3], A[4], A[5], A[6], A[7], A[0], A[1], W[i], K[i] ); i++; P( A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[0], W[i], K[i] ); i++; } while (i < 80); for (int j = 0; j < 8; j++) ctx->state[j] += A[j]; return 0; #undef SHR #undef ROTR #undef S0 #undef S1 #undef S2 #undef S3 #undef F0 #undef F1 #undef P } /** * @brief initialize the SHA1/SHA224/SHA256 contex */ int __esp_sha_init(esp_sha_t *ctx, esp_sha_type_t type, const uint32_t *state_ctx, size_t size, sha_cal_t sha_cal) { util_assert(ctx); ctx->total[0] = 0; ctx->total[1] = 0; for (int i = 0; i < size; i ++) ctx->state[i] = state_ctx[i]; ctx->type = type; ctx->sha_cal = sha_cal; return 0; } /** * @brief initialize the SHA512 contex */ int __esp_sha512_init(esp_sha512_t *ctx, esp_sha_type_t type, const uint64_t *state_ctx, size_t size) { util_assert(ctx); ctx->total[0] = 0; ctx->total[1] = 0; for (int i = 0; i < size; i ++) ctx->state[i] = state_ctx[i]; ctx->type = type; ctx->sha_cal = __esp_sha512_process; return 0; } /** * @brief input data which is calculated for SHA */ int __esp_sha_update(esp_sha_t *ctx, const void *src, size_t size) { int ret; size_t fill; uint32_t left; uint32_t step; sha_cal_t sha_cal; size_t ilen = size; const uint8_t *input = (const uint8_t *)src; util_assert(ctx); util_assert(src); if (ilen == 0) return 0; if (SHA1 == ctx->type || SHA224 == ctx->type || SHA256 == ctx->type) { left = ctx->total[0] & 0x3F; ctx->total[0] += (uint32_t)ilen; if (ctx->total[0] < (uint32_t)ilen) ctx->total[1]++; sha_cal = ctx->sha_cal; step = 64; } else { esp_sha512_t *ctx512 = (esp_sha512_t *)ctx; left = (uint32_t)(ctx512->total[0] & 0x7F); ctx512->total[0] += ilen; if (ctx512->total[0] < ilen) ctx512->total[1]++; sha_cal = ctx512->sha_cal; step = 128; } fill = step - left; if (left && ilen >= fill) { memcpy(ctx->buffer + left, input, fill); if ((ret = sha_cal(ctx, ctx->buffer)) != 0) return ret; input += fill; ilen -= fill; left = 0; } while (ilen >= step) { ret = sha_cal(ctx, input); if (ret) return ret; input += step; ilen -= step; } if (ilen > 0) memcpy(ctx->buffer + left, input, ilen); return 0; } /** * @brief input data which is calculated for SHA */ int __esp_sha_finish(esp_sha_t *ctx, void *dest) { int ret; size_t bytes = 0; uint32_t last, padn; uint64_t high, low; uint8_t *output = dest; size_t step; void *state; uint8_t msglen[16]; util_assert(ctx); util_assert(dest); if (SHA1 == ctx->type) bytes = 20; else if (SHA224 == ctx->type) bytes = 28; else if (SHA256 == ctx->type) bytes = 32; else if (SHA384 == ctx->type) bytes = 48; else if (SHA512 == ctx->type) bytes = 64; if (SHA1 == ctx->type || SHA224 == ctx->type || SHA256 == ctx->type) { high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); step = 4; state = ctx->state; } else { esp_sha512_t *ctx512 = (esp_sha512_t *)ctx; high = (ctx512->total[0] >> 61) | (ctx512->total[1] << 3); low = (ctx512->total[0] << 3); last = (size_t)(ctx512->total[0] & 0x7F); padn = (last < 112) ? (112 - last) : (240 - last); step = 8; state = ctx512->state; } esp_sha_put_be(msglen, &high, step, step); esp_sha_put_be(msglen + step, &low, step, step); ret = __esp_sha_update(ctx, sha_padding, padn); if (ret) return ret; ret = __esp_sha_update(ctx, msglen, step * 2); if (ret) return ret; esp_sha_put_be(output, state, bytes, step); return 0; }