diff --git a/library/ecp.c b/library/ecp.c index 427059bb5..d71c21a5c 100644 --- a/library/ecp.c +++ b/library/ecp.c @@ -1346,6 +1346,7 @@ cleanup: #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */ } +#if !defined(MBEDTLS_ECP_MUL_ALT) /* * Normalize jacobian coordinates of an array of (pointers to) points, * using Montgomery's trick to perform only one inversion mod P. @@ -1468,6 +1469,7 @@ cleanup: mbedtls_mpi_free(&tmp); return ret; } +#endif /* MBEDTLS_ECP_MUL_ALT */ /* * Point doubling R = 2 P, Jacobian coordinates @@ -1671,6 +1673,7 @@ cleanup: #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */ } +#if !defined(MBEDTLS_ECP_MUL_ALT) /* * Randomize jacobian coordinates: * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l @@ -2405,6 +2408,8 @@ cleanup: return ret; } +#endif /* MBEDTLS_ECP_MUL_ALT */ + #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) @@ -2416,6 +2421,7 @@ cleanup: * For scalar multiplication, we'll use a Montgomery ladder. */ +#if !defined(MBEDTLS_ECP_MUL_ALT) /* * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 * Cost: 1M + 1I @@ -2615,18 +2621,27 @@ cleanup: return ret; } +#endif /* MBEDTLS_ECP_MUL_ALT */ #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ +#if !defined(MBEDTLS_ECP_MUL_ALT) /* * Restartable multiplication R = m * P * * This internal function can be called without an RNG in case where we know * the inputs are not sensitive. */ +#if defined(MBEDTLS_ECP_MUL_ALT_SOFT_FALLBACK) +int ecp_mul_restartable_internal_soft(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, + const mbedtls_mpi *m, const mbedtls_ecp_point *P, + int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, + mbedtls_ecp_restart_ctx *rs_ctx) +#else static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_ecp_restart_ctx *rs_ctx) +#endif { int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; #if defined(MBEDTLS_ECP_INTERNAL_ALT) @@ -2690,6 +2705,7 @@ cleanup: return ret; } +#endif /* MBEDTLS_ECP_MUL_ALT */ /* * Restartable multiplication R = m * P @@ -2717,7 +2733,10 @@ int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, } #endif /* MBEDTLS_ECP_C */ +#if !defined(MBEDTLS_ECP_VERIFY_ALT) + #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) + /* * Check that an affine point is valid as a public key, * short weierstrass curves (SEC1 3.2.3.1) @@ -2755,6 +2774,7 @@ cleanup: return ret; } #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ +#endif /* MBEDTLS_ECP_VERIFY_ALT */ #if defined(MBEDTLS_ECP_C) #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) @@ -2910,6 +2930,8 @@ int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #endif /* MBEDTLS_ECP_C */ +#if !defined(MBEDTLS_ECP_VERIFY_ALT) + #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) #define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) } @@ -3021,11 +3043,19 @@ static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_p } #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ +#endif /* MBEDTLS_ECP_VERIFY_ALT */ + +#if !defined(MBEDTLS_ECP_VERIFY_ALT) /* * Check that a point is valid as a public key */ +#if defined(MBEDTLS_ECP_VERIFY_ALT_SOFT_FALLBACK) +int mbedtls_ecp_check_pubkey_soft(const mbedtls_ecp_group *grp, + const mbedtls_ecp_point *pt) +#else int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt) +#endif { /* Must use affine coordinates */ if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) { @@ -3044,6 +3074,7 @@ int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp, #endif return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; } +#endif /* MBEDTLS_ECP_VERIFY_ALT */ /* * Check that an mbedtls_mpi is valid as a private key