Merge pull request #1009 from paul-elliott-arm/mbedtls-2.28.3rc0-pr

Mbedtls 2.28.3rc0 pr - DO NOT MERGE
This commit is contained in:
Paul Elliott 2023-03-24 15:54:53 +00:00 committed by GitHub
commit 981743de6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
36 changed files with 1012 additions and 268 deletions

View File

@ -70,6 +70,7 @@ jobs:
os: windows
script:
- scripts/windows_msbuild.bat v141 # Visual Studio 2017
- visualc/VS2010/x64/Release/selftest.exe --ci
after_failure:
- tests/scripts/travis-log-failure.sh

View File

@ -71,6 +71,6 @@ The following branches are currently maintained:
- [`development`](https://github.com/Mbed-TLS/mbedtls/)
- [`mbedtls-2.28`](https://github.com/Mbed-TLS/mbedtls/tree/mbedtls-2.28)
maintained until at least the end of 2024, see
<https://github.com/Mbed-TLS/mbedtls/releases/tag/v2.28.2>.
<https://github.com/Mbed-TLS/mbedtls/releases/tag/v2.28.3>.
Users are urged to always use the latest version of a maintained branch.

View File

@ -1,5 +1,84 @@
Mbed TLS ChangeLog (Sorted per branch, date)
= Mbed TLS 2.28.3 branch released 2023-03-28
Features
* Use HOSTCC (if it is set) when compiling C code during generation of the
configuration-independent files. This allows them to be generated when
CC is set for cross compilation.
* AES-NI is now supported with Visual Studio.
* AES-NI is now supported in 32-bit builds, or when MBEDTLS_HAVE_ASM
is disabled, when compiling with GCC or Clang or a compatible compiler
for a target CPU that supports the requisite instructions (for example
gcc -m32 -msse2 -maes -mpclmul). (Generic x86 builds with GCC-like
compilers still require MBEDTLS_HAVE_ASM and a 64-bit target.)
Security
* MBEDTLS_AESNI_C, which is enabled by default, was silently ignored on
builds that couldn't compile the GCC-style assembly implementation
(most notably builds with Visual Studio), leaving them vulnerable to
timing side-channel attacks. There is now an intrinsics-based AES-NI
implementation as a fallback for when the assembly one cannot be used.
Bugfix
* Fix a build issue on Windows where the source and build directory could
not be on different drives (#5751).
* Fix possible integer overflow in mbedtls_timing_hardclock(), which
could cause a crash for certain platforms & compiler options.
* Fix IAR compiler warnings. Fixes #6924.
* Fix a bug in the build where directory names containing spaces were
causing generate_errors.pl to error out resulting in a build failure.
Fixes issue #6879.
* Fix compile error where MBEDTLS_RSA_C and MBEDTLS_X509_CRT_WRITE_C are
defined, but MBEDTLS_PK_RSA_ALT_SUPPORT is not defined. Fixes #3174.
* Fix a build issue when defining MBEDTLS_TIMING_ALT and MBEDTLS_SELF_TEST.
The library would not link if the user didn't provide an external self-test
function. The self-test is now provided regardless of the choice of
internal/alternative timing implementation. Fixes #6923.
* mbedtls_x509write_crt_set_serial() now explicitly rejects serial numbers
whose binary representation is longer than 20 bytes. This was already
forbidden by the standard (RFC5280 - section 4.1.2.2) and now it's being
enforced also at code level.
* Fix potential undefined behavior in mbedtls_mpi_sub_abs(). Reported by
Pascal Cuoq using TrustInSoft Analyzer in #6701; observed independently by
Aaron Ucko under Valgrind.
* Fix behavior of certain sample programs which could, when run with no
arguments, access uninitialized memory in some cases. Fixes #6700 (which
was found by TrustInSoft Analyzer during REDOCS'22) and #1120.
* Fix build errors in test programs when MBEDTLS_CERTS_C is disabled.
Fixes #6243.
* Fix parsing of X.509 SubjectAlternativeName extension. Previously,
malformed alternative name components were not caught during initial
certificate parsing, but only on subsequent calls to
mbedtls_x509_parse_subject_alt_name(). Fixes #2838.
* Fix bug in conversion from OID to string in
mbedtls_oid_get_numeric_string(). OIDs such as 2.40.0.25 are now printed
correctly.
* Reject OIDs with overlong-encoded subidentifiers when converting
them to a string.
* Reject OIDs with subidentifier values exceeding UINT_MAX. Such
subidentifiers can be valid, but Mbed TLS cannot currently handle them.
* Reject OIDs that have unterminated subidentifiers, or (equivalently)
have the most-significant bit set in their last byte.
* Silence a warning about an unused local variable in bignum.c on
some architectures. Fixes #7166.
* Silence warnings from clang -Wdocumentation about empty \retval
descriptions, which started appearing with Clang 15. Fixes #6960.
* Fix undefined behavior in mbedtls_ssl_read() and mbedtls_ssl_write() if
len argument is 0 and buffer is NULL.
Changes
* The C code follows a new coding style. This is transparent for users but
affects contributors and maintainers of local patches. For more
information, see
https://mbed-tls.readthedocs.io/en/latest/kb/how-to/rewrite-branch-for-coding-style/
* Changed the default MBEDTLS_ECP_WINDOW_SIZE from 6 to 2.
As tested in issue 6790, the correlation between this define and
RSA decryption performance has changed lately due to security fixes.
To fix the performance degradation when using default values the
window was reduced from 6 to 2, a value that gives the best or close
to best results when tested on Cortex-M4 and Intel i7.
= Mbed TLS 2.28.2 branch released 2022-12-14
Security

View File

@ -1,3 +0,0 @@
Bugfix
* Fix build errors in test programs when MBEDTLS_CERTS_C is disabled.
Fixes #6243.

View File

@ -1,4 +0,0 @@
Features
* Use HOSTCC (if it is set) when compiling C code during generation of the
configuration-independent files. This allows them to be generated when
CC is set for cross compilation.

View File

@ -1,3 +0,0 @@
Bugfix
* Silence a warning about an unused local variable in bignum.c on
some architectures. Fixes #7166.

View File

@ -1,5 +0,0 @@
Changes
* The C code follows a new coding style. This is transparent for users but
affects contributors and maintainers of local patches. For more
information, see
https://mbed-tls.readthedocs.io/en/latest/kb/how-to/rewrite-branch-for-coding-style/

View File

@ -1,4 +0,0 @@
Bugfix
* Fix potential undefined behavior in mbedtls_mpi_sub_abs(). Reported by
Pascal Cuoq using TrustInSoft Analyzer in #6701; observed independently by
Aaron Ucko under Valgrind.

View File

@ -1,3 +0,0 @@
Bugfix
* Silence warnings from clang -Wdocumentation about empty \retval
descriptions, which started appearing with Clang 15. Fixes #6960.

View File

@ -1,4 +0,0 @@
Bugfix
* Fix behavior of certain sample programs which could, when run with no
arguments, access uninitialized memory in some cases. Fixes #6700 (which
was found by TrustInSoft Analyzer during REDOCS'22) and #1120.

View File

@ -1,4 +0,0 @@
Bugfix
* Fix possible integer overflow in mbedtls_timing_hardclock(), which
could cause a crash for certain platforms & compiler options.

View File

@ -1,2 +0,0 @@
Bugfix
* Fix IAR compiler warnings. Fixes #6924.

View File

@ -1,10 +0,0 @@
Bugfix
* Fix bug in conversion from OID to string in
mbedtls_oid_get_numeric_string(). OIDs such as 2.40.0.25 are now printed
correctly.
* Reject OIDs with overlong-encoded subidentifiers when converting
them to a string.
* Reject OIDs with subidentifier values exceeding UINT_MAX. Such
subidentifiers can be valid, but Mbed TLS cannot currently handle them.
* Reject OIDs that have unterminated subidentifiers, or (equivalently)
have the most-significant bit set in their last byte.

View File

@ -1,3 +0,0 @@
Bugfix
* Fix compile error where MBEDTLS_RSA_C and MBEDTLS_X509_CRT_WRITE_C are
defined, but MBEDTLS_PK_RSA_ALT_SUPPORT is not defined. Fixes #3174.

View File

@ -1,4 +0,0 @@
Bugfix
* Fix a bug in the build where directory names containing spaces were
causing generate_errors.pl to error out resulting in a build failure.
Fixes issue #6879.

View File

@ -1,3 +0,0 @@
Bugfix
* Fix a build issue on Windows where the source and build directory could not be on
different drives (#5751).

View File

@ -1,5 +0,0 @@
Bugfix
* Fix a build issue when defining MBEDTLS_TIMING_ALT and MBEDTLS_SELF_TEST.
The library would not link if the user didn't provide an external self-test
function. The self-test is now provided regardless of the choice of
internal/alternative timing implementation. Fixes #6923.

View File

@ -1,5 +0,0 @@
Bugfix
* mbedtls_x509write_crt_set_serial() now explicitly rejects serial numbers
whose binary representation is longer than 20 bytes. This was already
forbidden by the standard (RFC5280 - section 4.1.2.2) and now it's being
enforced also at code level.

View File

@ -1,3 +0,0 @@
Bugfix
* Fix undefined behavior in mbedtls_ssl_read() and mbedtls_ssl_write() if
len argument is 0 and buffer is NULL.

View File

@ -1,7 +0,0 @@
Changes
* Changed the default MBEDTLS_ECP_WINDOW_SIZE from 6 to 2.
As tested in issue 6790, the correlation between this define and
RSA decryption performance has changed lately due to security fixes.
To fix the performance degradation when using default values the
window was reduced from 6 to 2, a value that gives the best or close
to best results when tested on Cortex-M4 and Intel i7.

View File

@ -1,5 +0,0 @@
Bugfix
* Fix parsing of X.509 SubjectAlternativeName extension. Previously,
malformed alternative name components were not caught during initial
certificate parsing, but only on subsequent calls to
mbedtls_x509_parse_subject_alt_name(). Fixes #2838.

View File

@ -18,3 +18,120 @@ goes public.
Only the maintained branches, as listed in [`BRANCHES.md`](BRANCHES.md),
get security fixes.
Users are urged to always use the latest version of a maintained branch.
## Threat model
We classify attacks based on the capabilities of the attacker.
### Remote attacks
In this section, we consider an attacker who can observe and modify data sent
over the network. This includes observing the content and timing of individual
packets, as well as suppressing or delaying legitimate messages, and injecting
messages.
Mbed TLS aims to fully protect against remote attacks and to enable the user
application in providing full protection against remote attacks. Said
protection is limited to providing security guarantees offered by the protocol
being implemented. (For example Mbed TLS alone won't guarantee that the
messages will arrive without delay, as the TLS protocol doesn't guarantee that
either.)
**Warning!** Block ciphers do not yet achieve full protection against attackers
who can measure the timing of packets with sufficient precision. For details
and workarounds see the [Block Ciphers](#block-ciphers) section.
### Local attacks
In this section, we consider an attacker who can run software on the same
machine. The attacker has insufficient privileges to directly access Mbed TLS
assets such as memory and files.
#### Timing attacks
The attacker is able to observe the timing of instructions executed by Mbed TLS
by leveraging shared hardware that both Mbed TLS and the attacker have access
to. Typical attack vectors include cache timings, memory bus contention and
branch prediction.
Mbed TLS provides limited protection against timing attacks. The cost of
protecting against timing attacks widely varies depending on the granularity of
the measurements and the noise present. Therefore the protection in Mbed TLS is
limited. We are only aiming to provide protection against **publicly
documented attack techniques**.
As attacks keep improving, so does Mbed TLS's protection. Mbed TLS is moving
towards a model of fully timing-invariant code, but has not reached this point
yet.
**Remark:** Timing information can be observed over the network or through
physical side channels as well. Remote and physical timing attacks are covered
in the [Remote attacks](remote-attacks) and [Physical
attacks](physical-attacks) sections respectively.
**Warning!** Block ciphers do not yet achieve full protection. For
details and workarounds see the [Block Ciphers](#block-ciphers) section.
#### Local non-timing side channels
The attacker code running on the platform has access to some sensor capable of
picking up information on the physical state of the hardware while Mbed TLS is
running. This could for example be an analogue-to-digital converter on the
platform that is located unfortunately enough to pick up the CPU noise.
Mbed TLS doesn't make any security guarantees against local non-timing-based
side channel attacks. If local non-timing attacks are present in a use case or
a user application's threat model, they need to be mitigated by the platform.
#### Local fault injection attacks
Software running on the same hardware can affect the physical state of the
device and introduce faults.
Mbed TLS doesn't make any security guarantees against local fault injection
attacks. If local fault injection attacks are present in a use case or a user
application's threat model, they need to be mitigated by the platform.
### Physical attacks
In this section, we consider an attacker who has access to physical information
about the hardware Mbed TLS is running on and/or can alter the physical state
of the hardware (e.g. power analysis, radio emissions or fault injection).
Mbed TLS doesn't make any security guarantees against physical attacks. If
physical attacks are present in a use case or a user application's threat
model, they need to be mitigated by physical countermeasures.
### Caveats
#### Out-of-scope countermeasures
Mbed TLS has evolved organically and a well defined threat model hasn't always
been present. Therefore, Mbed TLS might have countermeasures against attacks
outside the above defined threat model.
The presence of such countermeasures don't mean that Mbed TLS provides
protection against a class of attacks outside of the above described threat
model. Neither does it mean that the failure of such a countermeasure is
considered a vulnerability.
#### Block ciphers
Currently there are four block ciphers in Mbed TLS: AES, CAMELLIA, ARIA and
DES. The pure software implementation in Mbed TLS implementation uses lookup
tables, which are vulnerable to timing attacks.
These timing attacks can be physical, local or depending on network latency
even a remote. The attacks can result in key recovery.
**Workarounds:**
- Turn on hardware acceleration for AES. This is supported only on selected
architectures and currently only available for AES. See configuration options
`MBEDTLS_AESNI_C` and `MBEDTLS_PADLOCK_C` for details.
- Add a secure alternative implementation (typically hardware acceleration) for
the vulnerable cipher. See the [Alternative Implementations
Guide](docs/architecture/alternative-implementations.md) for more information.
- Use cryptographic mechanisms that are not based on block ciphers. In
particular, for authenticated encryption, use ChaCha20/Poly1305 instead of
block cipher modes. For random generation, use HMAC\_DRBG instead of CTR\_DRBG.

View File

@ -22,7 +22,7 @@
*/
/**
* @mainpage mbed TLS v2.28.2 source code documentation
* @mainpage mbed TLS v2.28.3 source code documentation
*
* This documentation describes the internal structure of mbed TLS. It was
* automatically generated from specially formatted comment blocks in

View File

@ -1,4 +1,4 @@
PROJECT_NAME = "mbed TLS v2.28.2"
PROJECT_NAME = "mbed TLS v2.28.3"
OUTPUT_DIRECTORY = ../apidoc/
FULL_PATH_NAMES = NO
OPTIMIZE_OUTPUT_FOR_C = YES

View File

@ -36,13 +36,49 @@
#define MBEDTLS_AESNI_AES 0x02000000u
#define MBEDTLS_AESNI_CLMUL 0x00000002u
/* Can we do AESNI with inline assembly?
* (Only implemented with gas syntax, only for 64-bit.)
*/
#if defined(MBEDTLS_HAVE_ASM) && defined(__GNUC__) && \
(defined(__amd64__) || defined(__x86_64__)) && \
!defined(MBEDTLS_HAVE_X86_64)
#define MBEDTLS_HAVE_X86_64
#endif
#if defined(MBEDTLS_AESNI_C)
/* Can we do AESNI with intrinsics?
* (Only implemented with certain compilers, only for certain targets.)
*
* NOTE: MBEDTLS_AESNI_HAVE_INTRINSICS and MBEDTLS_AESNI_HAVE_CODE are internal
* macros that may change in future releases.
*/
#undef MBEDTLS_AESNI_HAVE_INTRINSICS
#if defined(_MSC_VER)
/* Visual Studio supports AESNI intrinsics since VS 2008 SP1. We only support
* VS 2013 and up for other reasons anyway, so no need to check the version. */
#define MBEDTLS_AESNI_HAVE_INTRINSICS
#endif
/* GCC-like compilers: currently, we only support intrinsics if the requisite
* target flag is enabled when building the library (e.g. `gcc -mpclmul -msse2`
* or `clang -maes -mpclmul`). */
#if defined(__GNUC__) && defined(__AES__) && defined(__PCLMUL__)
#define MBEDTLS_AESNI_HAVE_INTRINSICS
#endif
/* Choose the implementation of AESNI, if one is available. */
#undef MBEDTLS_AESNI_HAVE_CODE
/* To minimize disruption when releasing the intrinsics-based implementation,
* favor the assembly-based implementation if it's available. We intend to
* revise this in a later release of Mbed TLS 3.x. In the long run, we will
* likely remove the assembly implementation. */
#if defined(MBEDTLS_HAVE_X86_64)
#define MBEDTLS_AESNI_HAVE_CODE 1 // via assembly
#elif defined(MBEDTLS_AESNI_HAVE_INTRINSICS)
#define MBEDTLS_AESNI_HAVE_CODE 2 // via intrinsics
#endif
#if defined(MBEDTLS_AESNI_HAVE_CODE)
#ifdef __cplusplus
extern "C" {
@ -131,6 +167,7 @@ int mbedtls_aesni_setkey_enc(unsigned char *rk,
}
#endif
#endif /* MBEDTLS_HAVE_X86_64 */
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */
#endif /* MBEDTLS_AESNI_H */

View File

@ -69,10 +69,6 @@
#error "MBEDTLS_HAVE_TIME_DATE without MBEDTLS_HAVE_TIME does not make sense"
#endif
#if defined(MBEDTLS_AESNI_C) && !defined(MBEDTLS_HAVE_ASM)
#error "MBEDTLS_AESNI_C defined, but not all prerequisites"
#endif
#if defined(MBEDTLS_CTR_DRBG_C) && !defined(MBEDTLS_AES_C)
#error "MBEDTLS_CTR_DRBG_C defined, but not all prerequisites"
#endif

View File

@ -51,7 +51,7 @@
* include/mbedtls/bn_mul.h
*
* Required by:
* MBEDTLS_AESNI_C
* MBEDTLS_AESNI_C (on some platforms)
* MBEDTLS_PADLOCK_C
*
* Comment to disable the use of assembly code.
@ -2344,14 +2344,32 @@
/**
* \def MBEDTLS_AESNI_C
*
* Enable AES-NI support on x86-64.
* Enable AES-NI support on x86-64 or x86-32.
*
* \note AESNI is only supported with certain compilers and target options:
* - Visual Studio 2013: supported.
* - GCC, x86-64, target not explicitly supporting AESNI:
* requires MBEDTLS_HAVE_ASM.
* - GCC, x86-32, target not explicitly supporting AESNI:
* not supported.
* - GCC, x86-64 or x86-32, target supporting AESNI: supported.
* For this assembly-less implementation, you must currently compile
* `library/aesni.c` and `library/aes.c` with machine options to enable
* SSE2 and AESNI instructions: `gcc -msse2 -maes -mpclmul` or
* `clang -maes -mpclmul`.
* - Non-x86 targets: this option is silently ignored.
* - Other compilers: this option is silently ignored.
*
* \note
* Above, "GCC" includes compatible compilers such as Clang.
* The limitations on target support are likely to be relaxed in the future.
*
* Module: library/aesni.c
* Caller: library/aes.c
*
* Requires: MBEDTLS_HAVE_ASM
* Requires: MBEDTLS_HAVE_ASM (on some platforms, see note)
*
* This modules adds support for the AES-NI instructions on x86-64
* This modules adds support for the AES-NI instructions on x86.
*/
#define MBEDTLS_AESNI_C

View File

@ -38,16 +38,16 @@
*/
#define MBEDTLS_VERSION_MAJOR 2
#define MBEDTLS_VERSION_MINOR 28
#define MBEDTLS_VERSION_PATCH 2
#define MBEDTLS_VERSION_PATCH 3
/**
* The single version number has the following structure:
* MMNNPP00
* Major version | Minor version | Patch version
*/
#define MBEDTLS_VERSION_NUMBER 0x021C0200
#define MBEDTLS_VERSION_STRING "2.28.2"
#define MBEDTLS_VERSION_STRING_FULL "mbed TLS 2.28.2"
#define MBEDTLS_VERSION_NUMBER 0x021C0300
#define MBEDTLS_VERSION_STRING "2.28.3"
#define MBEDTLS_VERSION_STRING_FULL "mbed TLS 2.28.3"
#if defined(MBEDTLS_VERSION_C)

View File

@ -204,15 +204,15 @@ endif(USE_STATIC_MBEDTLS_LIBRARY)
if(USE_SHARED_MBEDTLS_LIBRARY)
set(CMAKE_LIBRARY_PATH ${CMAKE_CURRENT_BINARY_DIR})
add_library(${mbedcrypto_target} SHARED ${src_crypto})
set_target_properties(${mbedcrypto_target} PROPERTIES VERSION 2.28.2 SOVERSION 7)
set_target_properties(${mbedcrypto_target} PROPERTIES VERSION 2.28.3 SOVERSION 7)
target_link_libraries(${mbedcrypto_target} PUBLIC ${libs})
add_library(${mbedx509_target} SHARED ${src_x509})
set_target_properties(${mbedx509_target} PROPERTIES VERSION 2.28.2 SOVERSION 1)
set_target_properties(${mbedx509_target} PROPERTIES VERSION 2.28.3 SOVERSION 1)
target_link_libraries(${mbedx509_target} PUBLIC ${libs} ${mbedcrypto_target})
add_library(${mbedtls_target} SHARED ${src_tls})
set_target_properties(${mbedtls_target} PROPERTIES VERSION 2.28.2 SOVERSION 14)
set_target_properties(${mbedtls_target} PROPERTIES VERSION 2.28.3 SOVERSION 14)
target_link_libraries(${mbedtls_target} PUBLIC ${libs} ${mbedx509_target})
endif(USE_SHARED_MBEDTLS_LIBRARY)

View File

@ -50,8 +50,7 @@
#define AES_VALIDATE(cond) \
MBEDTLS_INTERNAL_VALIDATE(cond)
#if defined(MBEDTLS_PADLOCK_C) && \
(defined(MBEDTLS_HAVE_X86) || defined(MBEDTLS_PADLOCK_ALIGN16))
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)
static int aes_padlock_ace = -1;
#endif
@ -512,6 +511,53 @@ void mbedtls_aes_xts_free(mbedtls_aes_xts_context *ctx)
}
#endif /* MBEDTLS_CIPHER_MODE_XTS */
/* Some implementations need the round keys to be aligned.
* Return an offset to be added to buf, such that (buf + offset) is
* correctly aligned.
* Note that the offset is in units of elements of buf, i.e. 32-bit words,
* i.e. an offset of 1 means 4 bytes and so on.
*/
#if (defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)) || \
(defined(MBEDTLS_AESNI_C) && MBEDTLS_AESNI_HAVE_CODE == 2)
#define MAY_NEED_TO_ALIGN
#endif
static unsigned mbedtls_aes_rk_offset(uint32_t *buf)
{
#if defined(MAY_NEED_TO_ALIGN)
int align_16_bytes = 0;
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)
if (aes_padlock_ace == -1) {
aes_padlock_ace = mbedtls_padlock_has_support(MBEDTLS_PADLOCK_ACE);
}
if (aes_padlock_ace) {
align_16_bytes = 1;
}
#endif
#if defined(MBEDTLS_AESNI_C) && MBEDTLS_AESNI_HAVE_CODE == 2
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
align_16_bytes = 1;
}
#endif
if (align_16_bytes) {
/* These implementations needs 16-byte alignment
* for the round key array. */
unsigned delta = ((uintptr_t) buf & 0x0000000fU) / 4;
if (delta == 0) {
return 0;
} else {
return 4 - delta; // 16 bytes = 4 uint32_t
}
}
#else /* MAY_NEED_TO_ALIGN */
(void) buf;
#endif /* MAY_NEED_TO_ALIGN */
return 0;
}
/*
* AES key schedule (encryption)
*/
@ -539,18 +585,9 @@ int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
}
#endif
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_PADLOCK_ALIGN16)
if (aes_padlock_ace == -1) {
aes_padlock_ace = mbedtls_padlock_has_support(MBEDTLS_PADLOCK_ACE);
}
ctx->rk = RK = ctx->buf + mbedtls_aes_rk_offset(ctx->buf);
if (aes_padlock_ace) {
ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16(ctx->buf);
} else
#endif
ctx->rk = RK = ctx->buf;
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
return mbedtls_aesni_setkey_enc((unsigned char *) ctx->rk, key, keybits);
}
@ -640,16 +677,7 @@ int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
mbedtls_aes_init(&cty);
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_PADLOCK_ALIGN16)
if (aes_padlock_ace == -1) {
aes_padlock_ace = mbedtls_padlock_has_support(MBEDTLS_PADLOCK_ACE);
}
if (aes_padlock_ace) {
ctx->rk = RK = MBEDTLS_PADLOCK_ALIGN16(ctx->buf);
} else
#endif
ctx->rk = RK = ctx->buf;
ctx->rk = RK = ctx->buf + mbedtls_aes_rk_offset(ctx->buf);
/* Also checks keybits */
if ((ret = mbedtls_aes_setkey_enc(&cty, key, keybits)) != 0) {
@ -658,7 +686,7 @@ int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
ctx->nr = cty.nr;
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
mbedtls_aesni_inverse_key((unsigned char *) ctx->rk,
(const unsigned char *) cty.rk, ctx->nr);
@ -964,6 +992,30 @@ void mbedtls_aes_decrypt(mbedtls_aes_context *ctx,
}
#endif /* !MBEDTLS_DEPRECATED_REMOVED */
#if defined(MAY_NEED_TO_ALIGN)
/* VIA Padlock and our intrinsics-based implementation of AESNI require
* the round keys to be aligned on a 16-byte boundary. We take care of this
* before creating them, but the AES context may have moved (this can happen
* if the library is called from a language with managed memory), and in later
* calls it might have a different alignment with respect to 16-byte memory.
* So we may need to realign.
* NOTE: In the LTS branch, the context contains a pointer to within itself,
* so if it has been moved, things will probably go pear-shaped. We keep this
* code for compatibility with the development branch, in case of future changes.
*/
static void aes_maybe_realign(mbedtls_aes_context *ctx)
{
unsigned current_offset = (unsigned) (ctx->rk - ctx->buf);
unsigned new_offset = mbedtls_aes_rk_offset(ctx->buf);
if (new_offset != current_offset) {
memmove(ctx->buf + new_offset, // new address
ctx->buf + current_offset, // current address
(ctx->nr + 1) * 16); // number of round keys * bytes per rk
ctx->rk = ctx->buf + new_offset;
}
}
#endif
/*
* AES-ECB block encryption/decryption
*/
@ -978,7 +1030,11 @@ int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
AES_VALIDATE_RET(mode == MBEDTLS_AES_ENCRYPT ||
mode == MBEDTLS_AES_DECRYPT);
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
#if defined(MAY_NEED_TO_ALIGN)
aes_maybe_realign(ctx);
#endif
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
return mbedtls_aesni_crypt_ecb(ctx, mode, input, output);
}
@ -986,13 +1042,7 @@ int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)
if (aes_padlock_ace) {
if (mbedtls_padlock_xcryptecb(ctx, mode, input, output) == 0) {
return 0;
}
// If padlock data misaligned, we just fall back to
// unaccelerated mode
//
return mbedtls_padlock_xcryptecb(ctx, mode, input, output);
}
#endif
@ -1785,6 +1835,32 @@ int mbedtls_aes_self_test(int verbose)
memset(key, 0, 32);
mbedtls_aes_init(&ctx);
if (verbose != 0) {
#if defined(MBEDTLS_AES_ALT)
mbedtls_printf(" AES note: alternative implementation.\n");
#else /* MBEDTLS_AES_ALT */
#if defined(MBEDTLS_PADLOCK_C) && defined(MBEDTLS_HAVE_X86)
if (mbedtls_padlock_has_support(MBEDTLS_PADLOCK_ACE)) {
mbedtls_printf(" AES note: using VIA Padlock.\n");
} else
#endif
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
mbedtls_printf(" AES note: using AESNI via ");
#if MBEDTLS_AESNI_HAVE_CODE == 1
mbedtls_printf("assembly");
#elif MBEDTLS_AESNI_HAVE_CODE == 2
mbedtls_printf("intrinsics");
#else
mbedtls_printf("(unknown)");
#endif
mbedtls_printf(".\n");
} else
#endif
mbedtls_printf(" AES note: built-in implementation.\n");
#endif /* MBEDTLS_AES_ALT */
}
/*
* ECB mode
*/

View File

@ -18,21 +18,14 @@
*/
/*
* [AES-WP] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
* [CLMUL-WP] http://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode/
* [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
* [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
*/
#include "common.h"
#if defined(MBEDTLS_AESNI_C)
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#warning \
"MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
#endif
#endif
#include "mbedtls/aesni.h"
#include <string.h>
@ -43,7 +36,14 @@
#endif
/* *INDENT-ON* */
#if defined(MBEDTLS_HAVE_X86_64)
#if defined(MBEDTLS_AESNI_HAVE_CODE)
#if MBEDTLS_AESNI_HAVE_CODE == 2
#if !defined(_WIN32)
#include <cpuid.h>
#endif
#include <immintrin.h>
#endif
/*
* AES-NI support detection routine
@ -54,17 +54,355 @@ int mbedtls_aesni_has_support(unsigned int what)
static unsigned int c = 0;
if (!done) {
#if MBEDTLS_AESNI_HAVE_CODE == 2
static unsigned info[4] = { 0, 0, 0, 0 };
#if defined(_MSC_VER)
__cpuid(info, 1);
#else
__cpuid(1, info[0], info[1], info[2], info[3]);
#endif
c = info[2];
#else /* AESNI using asm */
asm ("movl $1, %%eax \n\t"
"cpuid \n\t"
: "=c" (c)
:
: "eax", "ebx", "edx");
#endif /* MBEDTLS_AESNI_HAVE_CODE */
done = 1;
}
return (c & what) != 0;
}
#if MBEDTLS_AESNI_HAVE_CODE == 2
/*
* AES-NI AES-ECB block en(de)cryption
*/
int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16])
{
const __m128i *rk = (const __m128i *) (ctx->rk);
unsigned nr = ctx->nr; // Number of remaining rounds
// Load round key 0
__m128i state;
memcpy(&state, input, 16);
state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
++rk;
--nr;
if (mode == 0) {
while (nr != 0) {
state = _mm_aesdec_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesdeclast_si128(state, *rk);
} else {
while (nr != 0) {
state = _mm_aesenc_si128(state, *rk);
++rk;
--nr;
}
state = _mm_aesenclast_si128(state, *rk);
}
memcpy(output, &state, 16);
return 0;
}
/*
* GCM multiplication: c = a times b in GF(2^128)
* Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
*/
static void gcm_clmul(const __m128i aa, const __m128i bb,
__m128i *cc, __m128i *dd)
{
/*
* Caryless multiplication dd:cc = aa * bb
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
*cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
*dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
__m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
__m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
ee = ff; // e1+f1:e0+f0
ff = _mm_srli_si128(ff, 8); // 0:e1+f1
ee = _mm_slli_si128(ee, 8); // e0+f0:0
*dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
*cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
}
static void gcm_shift(__m128i *cc, __m128i *dd)
{
/* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 18). */
// // *cc = r1:r0
// // *dd = r3:r2
__m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
__m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
__m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
__m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
__m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
*cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
*dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
}
static __m128i gcm_reduce(__m128i xx)
{
// // xx = x1:x0
/* [CLMUL-WP] Algorithm 5 Step 2 */
__m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
__m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
__m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
__m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
}
static __m128i gcm_mix(__m128i dx)
{
/* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
__m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
__m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
__m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
// e0'+f0'+g0' is almost e0+f0+g0, except for some missing
// bits carried from d. Now get those bits back in.
__m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
__m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
__m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
__m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
}
void mbedtls_aesni_gcm_mult(unsigned char c[16],
const unsigned char a[16],
const unsigned char b[16])
{
__m128i aa, bb, cc, dd;
/* The inputs are in big-endian order, so byte-reverse them */
for (size_t i = 0; i < 16; i++) {
((uint8_t *) &aa)[i] = a[15 - i];
((uint8_t *) &bb)[i] = b[15 - i];
}
gcm_clmul(aa, bb, &cc, &dd);
gcm_shift(&cc, &dd);
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently dd:cc holds x3:x2:x1:x0 (already shifted).
*/
__m128i dx = gcm_reduce(cc);
__m128i xh = gcm_mix(dx);
cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
/* Now byte-reverse the outputs */
for (size_t i = 0; i < 16; i++) {
c[i] = ((uint8_t *) &cc)[15 - i];
}
return;
}
/*
* Compute decryption round keys from encryption round keys
*/
void mbedtls_aesni_inverse_key(unsigned char *invkey,
const unsigned char *fwdkey, int nr)
{
__m128i *ik = (__m128i *) invkey;
const __m128i *fk = (const __m128i *) fwdkey + nr;
*ik = *fk;
for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
*ik = _mm_aesimc_si128(*fk);
}
*ik = *fk;
}
/*
* Key expansion, 128-bit case
*/
static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
{
/*
* Finish generating the next round key.
*
* On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
* with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
*
* On exit, xword is r7:r6:r5:r4
* with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
* and this is returned, to be written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
state = _mm_slli_si128(state, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
state = _mm_slli_si128(state, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
state = _mm_slli_si128(state, 4); // r0:0:0:0
state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
return state;
}
static void aesni_setkey_enc_128(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
}
/*
* Key expansion, 192-bit case
*/
static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
unsigned char *rk)
{
/*
* Finish generating the next 6 quarter-keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
* and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
* and those are written to the round key buffer.
*/
xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
*state0 = xword; // = r9:r8:r7:r6
xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
*state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
*state1 = xword; // = stuff:stuff:r11:r10
/* Store state0 and the low half of state1 into rk, which is conceptually
* an array of 24-byte elements. Since 24 is not a multiple of 16,
* rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
memcpy(rk, state0, 16);
memcpy(rk + 16, state1, 8);
}
static void aesni_setkey_enc_192(unsigned char *rk,
const unsigned char *key)
{
/* First round: use original key */
memcpy(rk, key, 24);
/* aes.c guarantees that rk is aligned on a 16-byte boundary. */
__m128i state0 = ((__m128i *) rk)[0];
__m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
}
/*
* Key expansion, 256-bit case
*/
static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
__m128i *rk0, __m128i *rk1)
{
/*
* Finish generating the next two round keys.
*
* On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
* xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
* (obtained with AESKEYGENASSIST).
*
* On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
*/
xword = _mm_shuffle_epi32(xword, 0xff);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
xword = _mm_xor_si128(xword, state0);
state0 = _mm_slli_si128(state0, 4);
state0 = _mm_xor_si128(state0, xword);
*rk0 = state0;
/* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
xword = _mm_aeskeygenassist_si128(state0, 0x00);
xword = _mm_shuffle_epi32(xword, 0xaa);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
xword = _mm_xor_si128(xword, state1);
state1 = _mm_slli_si128(state1, 4);
state1 = _mm_xor_si128(state1, xword);
*rk1 = state1;
}
static void aesni_setkey_enc_256(unsigned char *rk_bytes,
const unsigned char *key)
{
__m128i *rk = (__m128i *) rk_bytes;
memcpy(&rk[0], key, 16);
memcpy(&rk[1], key + 16, 16);
/*
* Main "loop" - Generating one more key than necessary,
* see definition of mbedtls_aes_context.buf
*/
aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
}
#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#warning \
"MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
#endif
#endif
/*
* Binutils needs to be at least 2.19 to support AES-NI instructions.
* Unfortunately, a lot of users have a lower version now (2014-04).
@ -75,13 +413,13 @@ int mbedtls_aesni_has_support(unsigned int what)
* Operand macros are in gas order (src, dst) as opposed to Intel order
* (dst, src) in order to blend better into the surrounding assembly code.
*/
#define AESDEC ".byte 0x66,0x0F,0x38,0xDE,"
#define AESDECLAST ".byte 0x66,0x0F,0x38,0xDF,"
#define AESENC ".byte 0x66,0x0F,0x38,0xDC,"
#define AESENCLAST ".byte 0x66,0x0F,0x38,0xDD,"
#define AESIMC ".byte 0x66,0x0F,0x38,0xDB,"
#define AESKEYGENA ".byte 0x66,0x0F,0x3A,0xDF,"
#define PCLMULQDQ ".byte 0x66,0x0F,0x3A,0x44,"
#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
#define xmm0_xmm0 "0xC0"
#define xmm0_xmm1 "0xC8"
@ -109,22 +447,22 @@ int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
"1: \n\t" // encryption loop
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENC xmm1_xmm0 "\n\t" // do round
AESENC(xmm1_xmm0) // do round
"add $16, %1 \n\t" // point to next round key
"subl $1, %0 \n\t" // loop
"jnz 1b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESENCLAST xmm1_xmm0 "\n\t" // last round
AESENCLAST(xmm1_xmm0) // last round
"jmp 3f \n\t"
"2: \n\t" // decryption loop
"movdqu (%1), %%xmm1 \n\t"
AESDEC xmm1_xmm0 "\n\t" // do round
AESDEC(xmm1_xmm0) // do round
"add $16, %1 \n\t"
"subl $1, %0 \n\t"
"jnz 2b \n\t"
"movdqu (%1), %%xmm1 \n\t" // load round key
AESDECLAST xmm1_xmm0 "\n\t" // last round
AESDECLAST(xmm1_xmm0) // last round
"3: \n\t"
"movdqu %%xmm0, (%4) \n\t" // export output
@ -158,15 +496,15 @@ void mbedtls_aesni_gcm_mult(unsigned char c[16],
/*
* Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
* using [CLMUL-WP] algorithm 1 (p. 13).
* using [CLMUL-WP] algorithm 1 (p. 12).
*/
"movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
"movdqa %%xmm1, %%xmm3 \n\t" // same
"movdqa %%xmm1, %%xmm4 \n\t" // same
PCLMULQDQ xmm0_xmm1 ",0x00 \n\t" // a0*b0 = c1:c0
PCLMULQDQ xmm0_xmm2 ",0x11 \n\t" // a1*b1 = d1:d0
PCLMULQDQ xmm0_xmm3 ",0x10 \n\t" // a0*b1 = e1:e0
PCLMULQDQ xmm0_xmm4 ",0x01 \n\t" // a1*b0 = f1:f0
PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
"pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
"movdqa %%xmm4, %%xmm3 \n\t" // same
"psrldq $8, %%xmm4 \n\t" // 0:e1+f1
@ -176,7 +514,7 @@ void mbedtls_aesni_gcm_mult(unsigned char c[16],
/*
* Now shift the result one bit to the left,
* taking advantage of [CLMUL-WP] eq 27 (p. 20)
* taking advantage of [CLMUL-WP] eq 27 (p. 18)
*/
"movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
"movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
@ -194,7 +532,7 @@ void mbedtls_aesni_gcm_mult(unsigned char c[16],
/*
* Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
* using [CLMUL-WP] algorithm 5 (p. 20).
* using [CLMUL-WP] algorithm 5 (p. 18).
* Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
*/
/* Step 2 (1) */
@ -261,7 +599,7 @@ void mbedtls_aesni_inverse_key(unsigned char *invkey,
for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
asm ("movdqu (%0), %%xmm0 \n\t"
AESIMC xmm0_xmm0 "\n\t"
AESIMC(xmm0_xmm0)
"movdqu %%xmm0, (%1) \n\t"
:
: "r" (fk), "r" (ik)
@ -306,16 +644,16 @@ static void aesni_setkey_enc_128(unsigned char *rk,
/* Main "loop" */
"2: \n\t"
AESKEYGENA xmm0_xmm1 ",0x01 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x02 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x04 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x08 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x10 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x20 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x40 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x80 \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x1B \n\tcall 1b \n\t"
AESKEYGENA xmm0_xmm1 ",0x36 \n\tcall 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
@ -364,14 +702,14 @@ static void aesni_setkey_enc_192(unsigned char *rk,
"ret \n\t"
"2: \n\t"
AESKEYGENA xmm1_xmm2 ",0x01 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x02 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x04 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x08 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x10 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x20 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x40 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x80 \n\tcall 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
:
: "r" (rk), "r" (key)
@ -414,7 +752,7 @@ static void aesni_setkey_enc_256(unsigned char *rk,
/* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
* and proceed to generate next round key from there */
AESKEYGENA xmm0_xmm2 ",0x00 \n\t"
AESKEYGENA(xmm0_xmm2, "0x00")
"pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
"pxor %%xmm1, %%xmm2 \n\t"
"pslldq $4, %%xmm1 \n\t"
@ -432,18 +770,20 @@ static void aesni_setkey_enc_256(unsigned char *rk,
* see definition of mbedtls_aes_context.buf
*/
"2: \n\t"
AESKEYGENA xmm1_xmm2 ",0x01 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x02 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x04 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x08 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x10 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x20 \n\tcall 1b \n\t"
AESKEYGENA xmm1_xmm2 ",0x40 \n\tcall 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
:
: "r" (rk), "r" (key)
: "memory", "cc", "0");
}
#endif /* MBEDTLS_AESNI_HAVE_CODE */
/*
* Key expansion, wrapper
*/
@ -461,6 +801,6 @@ int mbedtls_aesni_setkey_enc(unsigned char *rk,
return 0;
}
#endif /* MBEDTLS_HAVE_X86_64 */
#endif /* MBEDTLS_AESNI_HAVE_CODE */
#endif /* MBEDTLS_AESNI_C */

View File

@ -93,7 +93,7 @@ static int gcm_gen_table(mbedtls_gcm_context *ctx)
ctx->HL[8] = vl;
ctx->HH[8] = vh;
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
#if defined(MBEDTLS_AESNI_HAVE_CODE)
/* With CLMUL support, we need only h, not the rest of the table */
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
return 0;
@ -190,7 +190,7 @@ static void gcm_mult(mbedtls_gcm_context *ctx, const unsigned char x[16],
unsigned char lo, hi, rem;
uint64_t zh, zl;
#if defined(MBEDTLS_AESNI_C) && defined(MBEDTLS_HAVE_X86_64)
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
unsigned char h[16];
@ -202,7 +202,7 @@ static void gcm_mult(mbedtls_gcm_context *ctx, const unsigned char x[16],
mbedtls_aesni_gcm_mult(output, x, h);
return;
}
#endif /* MBEDTLS_AESNI_C && MBEDTLS_HAVE_X86_64 */
#endif /* MBEDTLS_AESNI_HAVE_CODE */
lo = x[15] & 0xf;
@ -754,6 +754,27 @@ int mbedtls_gcm_self_test(int verbose)
int i, j, ret;
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
if (verbose != 0) {
#if defined(MBEDTLS_GCM_ALT)
mbedtls_printf(" GCM note: alternative implementation.\n");
#else /* MBEDTLS_GCM_ALT */
#if defined(MBEDTLS_AESNI_HAVE_CODE)
if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
mbedtls_printf(" GCM note: using AESNI via ");
#if MBEDTLS_AESNI_HAVE_CODE == 1
mbedtls_printf("assembly");
#elif MBEDTLS_AESNI_HAVE_CODE == 2
mbedtls_printf("intrinsics");
#else
mbedtls_printf("(unknown)");
#endif
mbedtls_printf(".\n");
} else
#endif
mbedtls_printf(" GCM note: built-in implementation.\n");
#endif /* MBEDTLS_GCM_ALT */
}
for (j = 0; j < 3; j++) {
int key_len = 128 + 64 * j;

View File

@ -353,6 +353,9 @@ int main(int argc, char *argv[])
unsigned char buf[1000000];
#endif
void *pointer;
#if defined(_WIN32)
int ci = 0; /* ci = 1 => running in CI, so don't wait for a key press */
#endif
/*
* The C standard doesn't guarantee that all-bits-0 is the representation
@ -380,6 +383,10 @@ int main(int argc, char *argv[])
} else if (strcmp(*argp, "--exclude") == 0 ||
strcmp(*argp, "-x") == 0) {
exclude_mode = 1;
#if defined(_WIN32)
} else if (strcmp(*argp, "--ci") == 0) {
ci = 1;
#endif
} else {
break;
}
@ -450,8 +457,10 @@ int main(int argc, char *argv[])
mbedtls_printf(" [ All tests PASS ]\n\n");
}
#if defined(_WIN32)
if (!ci) {
mbedtls_printf(" Press Enter to exit this program.\n");
fflush(stdout); getchar();
}
#endif
}

View File

@ -228,3 +228,12 @@ aes_decrypt_ecb:"000000000000000000000000000000000000000000000000000000000000000
AES-256-ECB Decrypt NIST KAT #12
aes_decrypt_ecb:"0000000000000000000000000000000000000000000000000000000000000000":"9b80eefb7ebe2d2b16247aa0efc72f5d":"e0000000000000000000000000000000":0
AES-128-ECB context alignment
aes_ecb_context_alignment:"000102030405060708090a0b0c0d0e0f"
AES-192-ECB context alignment
aes_ecb_context_alignment:"000102030405060708090a0b0c0d0e0f1011121314151617"
AES-256-ECB context alignment
aes_ecb_context_alignment:"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"

View File

@ -1,5 +1,52 @@
/* BEGIN_HEADER */
#include "mbedtls/aes.h"
/* Test AES with a copied context.
*
* enc and dec must be AES context objects. They don't need to
* be initialized, and are left freed.
*/
static int test_ctx_alignment(const data_t *key,
mbedtls_aes_context *enc,
mbedtls_aes_context *dec)
{
unsigned char plaintext[16] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
unsigned char ciphertext[16];
unsigned char output[16];
// Set key and encrypt with original context
mbedtls_aes_init(enc);
TEST_ASSERT(mbedtls_aes_setkey_enc(enc, key->x, key->len * 8) == 0);
TEST_ASSERT(mbedtls_aes_crypt_ecb(enc, MBEDTLS_AES_ENCRYPT,
plaintext, ciphertext) == 0);
// Set key for decryption with original context
mbedtls_aes_init(dec);
TEST_ASSERT(mbedtls_aes_setkey_dec(dec, key->x, key->len * 8) == 0);
// Wipe the original context to make sure nothing from it is used
memset(enc, 0, sizeof(*enc));
mbedtls_aes_free(enc);
// Decrypt
TEST_ASSERT(mbedtls_aes_crypt_ecb(dec, MBEDTLS_AES_DECRYPT,
ciphertext, output) == 0);
ASSERT_COMPARE(plaintext, 16, output, 16);
mbedtls_aes_free(dec);
return 1;
exit:
/* Bug: we may be leaving something unfreed. This is harmless
* in our built-in implementations, but might cause a memory leak
* with alternative implementations. */
return 0;
}
/* END_HEADER */
/* BEGIN_DEPENDENCIES
@ -621,6 +668,77 @@ void aes_misc_params()
}
/* END_CASE */
/* BEGIN_CASE */
void aes_ecb_context_alignment(data_t *key)
{
/* We test alignment multiple times, with different alignments
* of the context and of the plaintext/ciphertext. */
struct align0 {
mbedtls_aes_context ctx;
};
struct align0 *enc0 = NULL;
struct align0 *dec0 = NULL;
struct align1 {
char bump;
mbedtls_aes_context ctx;
};
struct align1 *enc1 = NULL;
struct align1 *dec1 = NULL;
/* All peak alignment */
ASSERT_ALLOC(enc0, 1);
ASSERT_ALLOC(dec0, 1);
if (!test_ctx_alignment(key, &enc0->ctx, &dec0->ctx)) {
goto exit;
}
mbedtls_free(enc0);
enc0 = NULL;
mbedtls_free(dec0);
dec0 = NULL;
/* Enc aligned, dec not */
ASSERT_ALLOC(enc0, 1);
ASSERT_ALLOC(dec1, 1);
if (!test_ctx_alignment(key, &enc0->ctx, &dec1->ctx)) {
goto exit;
}
mbedtls_free(enc0);
enc0 = NULL;
mbedtls_free(dec1);
dec1 = NULL;
/* Dec aligned, enc not */
ASSERT_ALLOC(enc1, 1);
ASSERT_ALLOC(dec0, 1);
if (!test_ctx_alignment(key, &enc1->ctx, &dec0->ctx)) {
goto exit;
}
mbedtls_free(enc1);
enc1 = NULL;
mbedtls_free(dec0);
dec0 = NULL;
/* Both shifted */
ASSERT_ALLOC(enc1, 1);
ASSERT_ALLOC(dec1, 1);
if (!test_ctx_alignment(key, &enc1->ctx, &dec1->ctx)) {
goto exit;
}
mbedtls_free(enc1);
enc1 = NULL;
mbedtls_free(dec1);
dec1 = NULL;
exit:
mbedtls_free(enc0);
mbedtls_free(dec0);
mbedtls_free(enc1);
mbedtls_free(dec1);
}
/* END_CASE */
/* BEGIN_CASE depends_on:MBEDTLS_SELF_TEST */
void aes_selftest()
{

View File

@ -1,8 +1,8 @@
Check compile time library version
check_compiletime_version:"2.28.2"
check_compiletime_version:"2.28.3"
Check runtime library version
check_runtime_version:"2.28.2"
check_runtime_version:"2.28.3"
Check for MBEDTLS_VERSION_C
check_feature:"MBEDTLS_VERSION_C":0