mirror of
https://github.com/espressif/mbedtls.git
synced 2025-07-13 18:20:30 +08:00

For easier maintenance the framework repository is flattened here and added to the forked branch in source format.
407 lines
15 KiB
Python
407 lines
15 KiB
Python
"""Common features for bignum in test generation framework."""
|
|
# Copyright The Mbed TLS Contributors
|
|
# SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
|
|
#
|
|
|
|
from abc import abstractmethod
|
|
import enum
|
|
from typing import Iterator, List, Tuple, TypeVar, Any
|
|
from copy import deepcopy
|
|
from itertools import chain
|
|
from math import ceil
|
|
|
|
from . import test_case
|
|
from . import test_data_generation
|
|
from .bignum_data import INPUTS_DEFAULT, MODULI_DEFAULT
|
|
|
|
T = TypeVar('T') #pylint: disable=invalid-name
|
|
|
|
def invmod(a: int, n: int) -> int:
|
|
"""Return inverse of a to modulo n.
|
|
|
|
Equivalent to pow(a, -1, n) in Python 3.8+. Implementation is equivalent
|
|
to long_invmod() in CPython.
|
|
"""
|
|
b, c = 1, 0
|
|
while n:
|
|
q, r = divmod(a, n)
|
|
a, b, c, n = n, c, b - q*c, r
|
|
# at this point a is the gcd of the original inputs
|
|
if a == 1:
|
|
return b
|
|
raise ValueError("Not invertible")
|
|
|
|
def invmod_positive(a: int, n: int) -> int:
|
|
"""Return a non-negative inverse of a to modulo n."""
|
|
inv = invmod(a, n)
|
|
return inv if inv >= 0 else inv + n
|
|
|
|
def hex_to_int(val: str) -> int:
|
|
"""Implement the syntax accepted by mbedtls_test_read_mpi().
|
|
|
|
This is a superset of what is accepted by mbedtls_test_read_mpi_core().
|
|
"""
|
|
if val in ['', '-']:
|
|
return 0
|
|
return int(val, 16)
|
|
|
|
def quote_str(val: str) -> str:
|
|
return "\"{}\"".format(val)
|
|
|
|
def bound_mpi(val: int, bits_in_limb: int) -> int:
|
|
"""First number exceeding number of limbs needed for given input value."""
|
|
return bound_mpi_limbs(limbs_mpi(val, bits_in_limb), bits_in_limb)
|
|
|
|
def bound_mpi_limbs(limbs: int, bits_in_limb: int) -> int:
|
|
"""First number exceeding maximum of given number of limbs."""
|
|
bits = bits_in_limb * limbs
|
|
return 1 << bits
|
|
|
|
def limbs_mpi(val: int, bits_in_limb: int) -> int:
|
|
"""Return the number of limbs required to store value."""
|
|
bit_length = max(val.bit_length(), 1)
|
|
return (bit_length + bits_in_limb - 1) // bits_in_limb
|
|
|
|
def combination_pairs(values: List[T]) -> List[Tuple[T, T]]:
|
|
"""Return all pair combinations from input values."""
|
|
return [(x, y) for x in values for y in values]
|
|
|
|
def bits_to_limbs(bits: int, bits_in_limb: int) -> int:
|
|
""" Return the appropriate ammount of limbs needed to store
|
|
a number contained in input bits"""
|
|
return ceil(bits / bits_in_limb)
|
|
|
|
def hex_digits_for_limb(limbs: int, bits_in_limb: int) -> int:
|
|
""" Return the hex digits need for a number of limbs. """
|
|
return 2 * ((limbs * bits_in_limb) // 8)
|
|
|
|
def hex_digits_max_int(val: str, bits_in_limb: int) -> int:
|
|
""" Return the first number exceeding maximum the limb space
|
|
required to store the input hex-string value. This method
|
|
weights on the input str_len rather than numerical value
|
|
and works with zero-padded inputs"""
|
|
n = ((1 << (len(val) * 4)) - 1)
|
|
l = limbs_mpi(n, bits_in_limb)
|
|
return bound_mpi_limbs(l, bits_in_limb)
|
|
|
|
def zfill_match(reference: str, target: str) -> str:
|
|
""" Zero pad target hex-string to match the limb size of
|
|
the reference input """
|
|
lt = len(target)
|
|
lr = len(reference)
|
|
target_len = lr if lt < lr else lt
|
|
return "{:x}".format(int(target, 16)).zfill(target_len)
|
|
|
|
class OperationCommon(test_data_generation.BaseTest):
|
|
"""Common features for bignum binary operations.
|
|
|
|
This adds functionality common in binary operation tests.
|
|
|
|
Attributes:
|
|
symbol: Symbol to use for the operation in case description.
|
|
input_values: List of values to use as test case inputs. These are
|
|
combined to produce pairs of values.
|
|
input_cases: List of tuples containing pairs of test case inputs. This
|
|
can be used to implement specific pairs of inputs.
|
|
unique_combinations_only: Boolean to select if test case combinations
|
|
must be unique. If True, only A,B or B,A would be included as a test
|
|
case. If False, both A,B and B,A would be included.
|
|
input_style: Controls the way how test data is passed to the functions
|
|
in the generated test cases. "variable" passes them as they are
|
|
defined in the python source. "arch_split" pads the values with
|
|
zeroes depending on the architecture/limb size. If this is set,
|
|
test cases are generated for all architectures.
|
|
arity: the number of operands for the operation. Currently supported
|
|
values are 1 and 2.
|
|
"""
|
|
symbol = ""
|
|
input_values = INPUTS_DEFAULT # type: List[str]
|
|
input_cases = [] # type: List[Any]
|
|
dependencies = [] # type: List[Any]
|
|
unique_combinations_only = False
|
|
input_styles = ["variable", "fixed", "arch_split"] # type: List[str]
|
|
input_style = "variable" # type: str
|
|
limb_sizes = [32, 64] # type: List[int]
|
|
arities = [1, 2]
|
|
arity = 2
|
|
suffix = False # for arity = 1, symbol can be prefix (default) or suffix
|
|
|
|
def __init__(self, val_a: str, val_b: str = "0", bits_in_limb: int = 32) -> None:
|
|
self.val_a = val_a
|
|
self.val_b = val_b
|
|
# Setting the int versions here as opposed to making them @properties
|
|
# provides earlier/more robust input validation.
|
|
self.int_a = hex_to_int(val_a)
|
|
self.int_b = hex_to_int(val_b)
|
|
self.dependencies = deepcopy(self.dependencies)
|
|
if bits_in_limb not in self.limb_sizes:
|
|
raise ValueError("Invalid number of bits in limb!")
|
|
if self.input_style == "arch_split":
|
|
self.dependencies.append("MBEDTLS_HAVE_INT{:d}".format(bits_in_limb))
|
|
self.bits_in_limb = bits_in_limb
|
|
|
|
@property
|
|
def boundary(self) -> int:
|
|
if self.arity == 1:
|
|
return self.int_a
|
|
elif self.arity == 2:
|
|
return max(self.int_a, self.int_b)
|
|
raise ValueError("Unsupported number of operands!")
|
|
|
|
@property
|
|
def limb_boundary(self) -> int:
|
|
return bound_mpi(self.boundary, self.bits_in_limb)
|
|
|
|
@property
|
|
def limbs(self) -> int:
|
|
return limbs_mpi(self.boundary, self.bits_in_limb)
|
|
|
|
@property
|
|
def hex_digits(self) -> int:
|
|
return hex_digits_for_limb(self.limbs, self.bits_in_limb)
|
|
|
|
def format_arg(self, val: str) -> str:
|
|
if self.input_style not in self.input_styles:
|
|
raise ValueError("Unknown input style!")
|
|
if self.input_style == "variable":
|
|
return val
|
|
else:
|
|
return val.zfill(self.hex_digits)
|
|
|
|
def format_result(self, res: int) -> str:
|
|
res_str = '{:x}'.format(res)
|
|
return quote_str(self.format_arg(res_str))
|
|
|
|
@property
|
|
def arg_a(self) -> str:
|
|
return self.format_arg(self.val_a)
|
|
|
|
@property
|
|
def arg_b(self) -> str:
|
|
if self.arity == 1:
|
|
raise AttributeError("Operation is unary and doesn't have arg_b!")
|
|
return self.format_arg(self.val_b)
|
|
|
|
def arguments(self) -> List[str]:
|
|
args = [quote_str(self.arg_a)]
|
|
if self.arity == 2:
|
|
args.append(quote_str(self.arg_b))
|
|
return args + self.result()
|
|
|
|
def description(self) -> str:
|
|
"""Generate a description for the test case.
|
|
|
|
If not set, case_description uses the form A `symbol` B, where symbol
|
|
is used to represent the operation. Descriptions of each value are
|
|
generated to provide some context to the test case.
|
|
"""
|
|
if not self.case_description:
|
|
if self.arity == 1:
|
|
format_string = "{1:x} {0}" if self.suffix else "{0} {1:x}"
|
|
self.case_description = format_string.format(
|
|
self.symbol, self.int_a
|
|
)
|
|
elif self.arity == 2:
|
|
self.case_description = "{:x} {} {:x}".format(
|
|
self.int_a, self.symbol, self.int_b
|
|
)
|
|
return super().description()
|
|
|
|
@property
|
|
def is_valid(self) -> bool:
|
|
return True
|
|
|
|
@abstractmethod
|
|
def result(self) -> List[str]:
|
|
"""Get the result of the operation.
|
|
|
|
This could be calculated during initialization and stored as `_result`
|
|
and then returned, or calculated when the method is called.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def get_value_pairs(cls) -> Iterator[Tuple[str, str]]:
|
|
"""Generator to yield pairs of inputs.
|
|
|
|
Combinations are first generated from all input values, and then
|
|
specific cases provided.
|
|
"""
|
|
if cls.arity == 1:
|
|
yield from ((a, "0") for a in cls.input_values)
|
|
elif cls.arity == 2:
|
|
if cls.unique_combinations_only:
|
|
yield from combination_pairs(cls.input_values)
|
|
else:
|
|
yield from (
|
|
(a, b)
|
|
for a in cls.input_values
|
|
for b in cls.input_values
|
|
)
|
|
else:
|
|
raise ValueError("Unsupported number of operands!")
|
|
|
|
@classmethod
|
|
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
|
|
if cls.input_style not in cls.input_styles:
|
|
raise ValueError("Unknown input style!")
|
|
if cls.arity not in cls.arities:
|
|
raise ValueError("Unsupported number of operands!")
|
|
if cls.input_style == "arch_split":
|
|
test_objects = (cls(a, b, bits_in_limb=bil)
|
|
for a, b in cls.get_value_pairs()
|
|
for bil in cls.limb_sizes)
|
|
special_cases = (cls(*args, bits_in_limb=bil) # type: ignore
|
|
for args in cls.input_cases
|
|
for bil in cls.limb_sizes)
|
|
else:
|
|
test_objects = (cls(a, b)
|
|
for a, b in cls.get_value_pairs())
|
|
special_cases = (cls(*args) for args in cls.input_cases)
|
|
yield from (valid_test_object.create_test_case()
|
|
for valid_test_object in filter(
|
|
lambda test_object: test_object.is_valid,
|
|
chain(test_objects, special_cases)
|
|
)
|
|
)
|
|
|
|
|
|
class ModulusRepresentation(enum.Enum):
|
|
"""Representation selector of a modulus."""
|
|
# Numerical values aligned with the type mbedtls_mpi_mod_rep_selector
|
|
INVALID = 0
|
|
MONTGOMERY = 2
|
|
OPT_RED = 3
|
|
|
|
def symbol(self) -> str:
|
|
"""The C symbol for this representation selector."""
|
|
return 'MBEDTLS_MPI_MOD_REP_' + self.name
|
|
|
|
@classmethod
|
|
def supported_representations(cls) -> List['ModulusRepresentation']:
|
|
"""Return all representations that are supported in positive test cases."""
|
|
return [cls.MONTGOMERY, cls.OPT_RED]
|
|
|
|
|
|
class ModOperationCommon(OperationCommon):
|
|
#pylint: disable=abstract-method
|
|
"""Target for bignum mod_raw test case generation."""
|
|
moduli = MODULI_DEFAULT # type: List[str]
|
|
montgomery_form_a = False
|
|
disallow_zero_a = False
|
|
|
|
def __init__(self, val_n: str, val_a: str, val_b: str = "0",
|
|
bits_in_limb: int = 64) -> None:
|
|
super().__init__(val_a=val_a, val_b=val_b, bits_in_limb=bits_in_limb)
|
|
self.val_n = val_n
|
|
# Setting the int versions here as opposed to making them @properties
|
|
# provides earlier/more robust input validation.
|
|
self.int_n = hex_to_int(val_n)
|
|
|
|
def to_montgomery(self, val: int) -> int:
|
|
return (val * self.r) % self.int_n
|
|
|
|
def from_montgomery(self, val: int) -> int:
|
|
return (val * self.r_inv) % self.int_n
|
|
|
|
def convert_from_canonical(self, canonical: int,
|
|
rep: ModulusRepresentation) -> int:
|
|
"""Convert values from canonical representation to the given representation."""
|
|
if rep is ModulusRepresentation.MONTGOMERY:
|
|
return self.to_montgomery(canonical)
|
|
elif rep is ModulusRepresentation.OPT_RED:
|
|
return canonical
|
|
else:
|
|
raise ValueError('Modulus representation not supported: {}'
|
|
.format(rep.name))
|
|
|
|
@property
|
|
def boundary(self) -> int:
|
|
return self.int_n
|
|
|
|
@property
|
|
def arg_a(self) -> str:
|
|
if self.montgomery_form_a:
|
|
value_a = self.to_montgomery(self.int_a)
|
|
else:
|
|
value_a = self.int_a
|
|
return self.format_arg('{:x}'.format(value_a))
|
|
|
|
@property
|
|
def arg_n(self) -> str:
|
|
return self.format_arg(self.val_n)
|
|
|
|
def format_arg(self, val: str) -> str:
|
|
return super().format_arg(val).zfill(self.hex_digits)
|
|
|
|
def arguments(self) -> List[str]:
|
|
return [quote_str(self.arg_n)] + super().arguments()
|
|
|
|
@property
|
|
def r(self) -> int: # pylint: disable=invalid-name
|
|
l = limbs_mpi(self.int_n, self.bits_in_limb)
|
|
return bound_mpi_limbs(l, self.bits_in_limb)
|
|
|
|
@property
|
|
def r_inv(self) -> int:
|
|
return invmod(self.r, self.int_n)
|
|
|
|
@property
|
|
def r2(self) -> int: # pylint: disable=invalid-name
|
|
return pow(self.r, 2)
|
|
|
|
@property
|
|
def is_valid(self) -> bool:
|
|
if self.int_a >= self.int_n:
|
|
return False
|
|
if self.disallow_zero_a and self.int_a == 0:
|
|
return False
|
|
if self.arity == 2 and self.int_b >= self.int_n:
|
|
return False
|
|
return True
|
|
|
|
def description(self) -> str:
|
|
"""Generate a description for the test case.
|
|
|
|
It uses the form A `symbol` B mod N, where symbol is used to represent
|
|
the operation.
|
|
"""
|
|
|
|
if not self.case_description:
|
|
return super().description() + " mod {:x}".format(self.int_n)
|
|
return super().description()
|
|
|
|
@classmethod
|
|
def input_cases_args(cls) -> Iterator[Tuple[Any, Any, Any]]:
|
|
if cls.arity == 1:
|
|
yield from ((n, a, "0") for a, n in cls.input_cases)
|
|
elif cls.arity == 2:
|
|
yield from ((n, a, b) for a, b, n in cls.input_cases)
|
|
else:
|
|
raise ValueError("Unsupported number of operands!")
|
|
|
|
@classmethod
|
|
def generate_function_tests(cls) -> Iterator[test_case.TestCase]:
|
|
if cls.input_style not in cls.input_styles:
|
|
raise ValueError("Unknown input style!")
|
|
if cls.arity not in cls.arities:
|
|
raise ValueError("Unsupported number of operands!")
|
|
if cls.input_style == "arch_split":
|
|
test_objects = (cls(n, a, b, bits_in_limb=bil)
|
|
for n in cls.moduli
|
|
for a, b in cls.get_value_pairs()
|
|
for bil in cls.limb_sizes)
|
|
special_cases = (cls(*args, bits_in_limb=bil)
|
|
for args in cls.input_cases_args()
|
|
for bil in cls.limb_sizes)
|
|
else:
|
|
test_objects = (cls(n, a, b)
|
|
for n in cls.moduli
|
|
for a, b in cls.get_value_pairs())
|
|
special_cases = (cls(*args) for args in cls.input_cases_args())
|
|
yield from (valid_test_object.create_test_case()
|
|
for valid_test_object in filter(
|
|
lambda test_object: test_object.is_valid,
|
|
chain(test_objects, special_cases)
|
|
))
|