/* * Simple PCI bus driver * * Copyright (c) 2017 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include "cutils.h" #include "pci.h" //#define DEBUG_CONFIG typedef struct { uint32_t size; /* 0 means no mapping defined */ uint8_t type; uint8_t enabled; /* true if mapping is enabled */ void *opaque; PCIBarSetFunc *bar_set; } PCIIORegion; struct PCIDevice { PCIBus *bus; uint8_t devfn; IRQSignal irq[4]; uint8_t config[256]; uint8_t next_cap_offset; /* offset of the next capability */ char *name; /* for debug only */ PCIIORegion io_regions[PCI_NUM_REGIONS]; }; struct PCIBus { int bus_num; PCIDevice *device[256]; PhysMemoryMap *mem_map; PhysMemoryMap *port_map; uint32_t irq_state[4][8]; /* one bit per device */ IRQSignal irq[4]; }; static int bus_map_irq(PCIDevice *d, int irq_num) { int slot_addend; slot_addend = (d->devfn >> 3) - 1; return (irq_num + slot_addend) & 3; } static void pci_device_set_irq(void *opaque, int irq_num, int level) { PCIDevice *d = opaque; PCIBus *b = d->bus; uint32_t mask; int i, irq_level; // printf("%s: pci_device_seq_irq: %d %d\n", d->name, irq_num, level); irq_num = bus_map_irq(d, irq_num); mask = 1 << (d->devfn & 0x1f); if (level) b->irq_state[irq_num][d->devfn >> 5] |= mask; else b->irq_state[irq_num][d->devfn >> 5] &= ~mask; /* compute the IRQ state */ mask = 0; for(i = 0; i < 8; i++) mask |= b->irq_state[irq_num][i]; irq_level = (mask != 0); set_irq(&b->irq[irq_num], irq_level); } static int devfn_alloc(PCIBus *b) { int devfn; for(devfn = 0; devfn < 256; devfn += 8) { if (!b->device[devfn]) return devfn; } return -1; } /* devfn < 0 means to allocate it */ PCIDevice *pci_register_device(PCIBus *b, const char *name, int devfn, uint16_t vendor_id, uint16_t device_id, uint8_t revision, uint16_t class_id) { PCIDevice *d; int i; if (devfn < 0) { devfn = devfn_alloc(b); if (devfn < 0) return NULL; } if (b->device[devfn]) return NULL; d = mallocz(sizeof(PCIDevice)); d->bus = b; d->name = strdup(name); d->devfn = devfn; put_le16(d->config + 0x00, vendor_id); put_le16(d->config + 0x02, device_id); d->config[0x08] = revision; put_le16(d->config + 0x0a, class_id); d->config[0x0e] = 0x00; /* header type */ d->next_cap_offset = 0x40; for(i = 0; i < 4; i++) irq_init(&d->irq[i], pci_device_set_irq, d, i); b->device[devfn] = d; return d; } IRQSignal *pci_device_get_irq(PCIDevice *d, unsigned int irq_num) { assert(irq_num < 4); return &d->irq[irq_num]; } static uint32_t pci_device_config_read(PCIDevice *d, uint32_t addr, int size_log2) { uint32_t val; switch(size_log2) { case 0: val = *(uint8_t *)(d->config + addr); break; case 1: /* Note: may be unaligned */ if (addr <= 0xfe) val = get_le16(d->config + addr); else val = *(uint8_t *)(d->config + addr); break; case 2: /* always aligned */ val = get_le32(d->config + addr); break; default: abort(); } #ifdef DEBUG_CONFIG printf("pci_config_read: dev=%s addr=0x%02x val=0x%x s=%d\n", d->name, addr, val, 1 << size_log2); #endif return val; } PhysMemoryMap *pci_device_get_mem_map(PCIDevice *d) { return d->bus->mem_map; } PhysMemoryMap *pci_device_get_port_map(PCIDevice *d) { return d->bus->port_map; } void pci_register_bar(PCIDevice *d, unsigned int bar_num, uint32_t size, int type, void *opaque, PCIBarSetFunc *bar_set) { PCIIORegion *r; uint32_t val, config_addr; assert(bar_num < PCI_NUM_REGIONS); assert((size & (size - 1)) == 0); /* power of two */ assert(size >= 4); r = &d->io_regions[bar_num]; assert(r->size == 0); r->size = size; r->type = type; r->enabled = FALSE; r->opaque = opaque; r->bar_set = bar_set; /* set the config value */ val = 0; if (bar_num == PCI_ROM_SLOT) { config_addr = 0x30; } else { val |= r->type; config_addr = 0x10 + 4 * bar_num; } put_le32(&d->config[config_addr], val); } static void pci_update_mappings(PCIDevice *d) { int cmd, i, offset; uint32_t new_addr; BOOL new_enabled; PCIIORegion *r; cmd = get_le16(&d->config[PCI_COMMAND]); for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (i == PCI_ROM_SLOT) { offset = 0x30; } else { offset = 0x10 + i * 4; } new_addr = get_le32(&d->config[offset]); new_enabled = FALSE; if (r->size != 0) { if ((r->type & PCI_ADDRESS_SPACE_IO) && (cmd & PCI_COMMAND_IO)) { new_enabled = TRUE; } else { if (cmd & PCI_COMMAND_MEMORY) { if (i == PCI_ROM_SLOT) { new_enabled = (new_addr & 1); } else { new_enabled = TRUE; } } } } if (new_enabled) { /* new address */ new_addr = get_le32(&d->config[offset]) & ~(r->size - 1); r->bar_set(r->opaque, i, new_addr, TRUE); r->enabled = TRUE; } else if (r->enabled) { r->bar_set(r->opaque, i, 0, FALSE); r->enabled = FALSE; } } } /* return != 0 if write is not handled */ static int pci_write_bar(PCIDevice *d, uint32_t addr, uint32_t val) { PCIIORegion *r; int reg; if (addr == 0x30) reg = PCI_ROM_SLOT; else reg = (addr - 0x10) >> 2; // printf("%s: write bar addr=%x data=%x\n", d->name, addr, val); r = &d->io_regions[reg]; if (r->size == 0) return -1; if (reg == PCI_ROM_SLOT) { val = val & ((~(r->size - 1)) | 1); } else { val = (val & ~(r->size - 1)) | r->type; } put_le32(d->config + addr, val); pci_update_mappings(d); return 0; } static void pci_device_config_write8(PCIDevice *d, uint32_t addr, uint32_t data) { int can_write; if (addr == PCI_STATUS || addr == (PCI_STATUS + 1)) { /* write 1 reset bits */ d->config[addr] &= ~data; return; } switch(d->config[0x0e]) { case 0x00: case 0x80: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x10 ... 0x27: /* base */ case 0x30 ... 0x33: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; default: case 0x01: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x38 ... 0x3b: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; } if (can_write) d->config[addr] = data; } static void pci_device_config_write(PCIDevice *d, uint32_t addr, uint32_t data, int size_log2) { int size, i; uint32_t addr1; #ifdef DEBUG_CONFIG printf("pci_config_write: dev=%s addr=0x%02x val=0x%x s=%d\n", d->name, addr, data, 1 << size_log2); #endif if (size_log2 == 2 && ((addr >= 0x10 && addr < 0x10 + 4 * 6) || addr == 0x30)) { if (pci_write_bar(d, addr, data) == 0) return; } size = 1 << size_log2; for(i = 0; i < size; i++) { addr1 = addr + i; if (addr1 <= 0xff) { pci_device_config_write8(d, addr1, (data >> (i * 8)) & 0xff); } } if (PCI_COMMAND >= addr && PCI_COMMAND < addr + size) { pci_update_mappings(d); } } static void pci_data_write(PCIBus *s, uint32_t addr, uint32_t data, int size_log2) { PCIDevice *d; int bus_num, devfn, config_addr; bus_num = (addr >> 16) & 0xff; if (bus_num != s->bus_num) return; devfn = (addr >> 8) & 0xff; d = s->device[devfn]; if (!d) return; config_addr = addr & 0xff; pci_device_config_write(d, config_addr, data, size_log2); } static const uint32_t val_ones[3] = { 0xff, 0xffff, 0xffffffff }; static uint32_t pci_data_read(PCIBus *s, uint32_t addr, int size_log2) { PCIDevice *d; int bus_num, devfn, config_addr; bus_num = (addr >> 16) & 0xff; if (bus_num != s->bus_num) return val_ones[size_log2]; devfn = (addr >> 8) & 0xff; d = s->device[devfn]; if (!d) return val_ones[size_log2]; config_addr = addr & 0xff; return pci_device_config_read(d, config_addr, size_log2); } /* warning: only valid for one DEVIO page. Return NULL if no memory at the given address */ uint8_t *pci_device_get_dma_ptr(PCIDevice *d, uint64_t addr, BOOL is_rw) { return phys_mem_get_ram_ptr(d->bus->mem_map, addr, is_rw); } void pci_device_set_config8(PCIDevice *d, uint8_t addr, uint8_t val) { d->config[addr] = val; } void pci_device_set_config16(PCIDevice *d, uint8_t addr, uint16_t val) { put_le16(&d->config[addr], val); } int pci_device_get_devfn(PCIDevice *d) { return d->devfn; } /* return the offset of the capability or < 0 if error. */ int pci_add_capability(PCIDevice *d, const uint8_t *buf, int size) { int offset; offset = d->next_cap_offset; if ((offset + size) > 256) return -1; d->next_cap_offset += size; d->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST; memcpy(d->config + offset, buf, size); d->config[offset + 1] = d->config[PCI_CAPABILITY_LIST]; d->config[PCI_CAPABILITY_LIST] = offset; return offset; } /* i440FX host bridge */ struct I440FXState { PCIBus *pci_bus; PCIDevice *pci_dev; PCIDevice *piix3_dev; uint32_t config_reg; uint8_t pic_irq_state[16]; IRQSignal *pic_irqs; /* 16 irqs */ }; static void i440fx_write_addr(void *opaque, uint32_t offset, uint32_t data, int size_log2) { I440FXState *s = opaque; s->config_reg = data; } static uint32_t i440fx_read_addr(void *opaque, uint32_t offset, int size_log2) { I440FXState *s = opaque; return s->config_reg; } static void i440fx_write_data(void *opaque, uint32_t offset, uint32_t data, int size_log2) { I440FXState *s = opaque; if (s->config_reg & 0x80000000) { if (size_log2 == 2) { /* it is simpler to assume 32 bit config accesses are always aligned */ pci_data_write(s->pci_bus, s->config_reg & ~3, data, size_log2); } else { pci_data_write(s->pci_bus, s->config_reg | offset, data, size_log2); } } } static uint32_t i440fx_read_data(void *opaque, uint32_t offset, int size_log2) { I440FXState *s = opaque; if (!(s->config_reg & 0x80000000)) return val_ones[size_log2]; if (size_log2 == 2) { /* it is simpler to assume 32 bit config accesses are always aligned */ return pci_data_read(s->pci_bus, s->config_reg & ~3, size_log2); } else { return pci_data_read(s->pci_bus, s->config_reg | offset, size_log2); } } static void i440fx_set_irq(void *opaque, int irq_num, int irq_level) { I440FXState *s = opaque; PCIDevice *hd = s->piix3_dev; int pic_irq; /* map to the PIC irq (different IRQs can be mapped to the same PIC irq) */ hd->config[0x60 + irq_num] &= ~0x80; pic_irq = hd->config[0x60 + irq_num]; if (pic_irq < 16) { if (irq_level) s->pic_irq_state[pic_irq] |= 1 << irq_num; else s->pic_irq_state[pic_irq] &= ~(1 << irq_num); set_irq(&s->pic_irqs[pic_irq], (s->pic_irq_state[pic_irq] != 0)); } } I440FXState *i440fx_init(PCIBus **pbus, int *ppiix3_devfn, PhysMemoryMap *mem_map, PhysMemoryMap *port_map, IRQSignal *pic_irqs) { I440FXState *s; PCIBus *b; PCIDevice *d; int i; s = mallocz(sizeof(*s)); b = mallocz(sizeof(PCIBus)); b->bus_num = 0; b->mem_map = mem_map; b->port_map = port_map; s->pic_irqs = pic_irqs; for(i = 0; i < 4; i++) { irq_init(&b->irq[i], i440fx_set_irq, s, i); } cpu_register_device(port_map, 0xcf8, 1, s, i440fx_read_addr, i440fx_write_addr, DEVIO_SIZE32); cpu_register_device(port_map, 0xcfc, 4, s, i440fx_read_data, i440fx_write_data, DEVIO_SIZE8 | DEVIO_SIZE16 | DEVIO_SIZE32); d = pci_register_device(b, "i440FX", 0, 0x8086, 0x1237, 0x02, 0x0600); put_le16(&d->config[PCI_SUBSYSTEM_VENDOR_ID], 0x1af4); /* Red Hat, Inc. */ put_le16(&d->config[PCI_SUBSYSTEM_ID], 0x1100); /* QEMU virtual machine */ s->pci_dev = d; s->pci_bus = b; s->piix3_dev = pci_register_device(b, "PIIX3", 8, 0x8086, 0x7000, 0x00, 0x0601); pci_device_set_config8(s->piix3_dev, 0x0e, 0x80); /* header type */ *pbus = b; *ppiix3_devfn = s->piix3_dev->devfn; return s; } /* in case no BIOS is used, map the interrupts. */ void i440fx_map_interrupts(I440FXState *s, uint8_t *elcr, const uint8_t *pci_irqs) { PCIBus *b = s->pci_bus; PCIDevice *d, *hd; int irq_num, pic_irq, devfn, i; /* set a default PCI IRQ mapping to PIC IRQs */ hd = s->piix3_dev; elcr[0] = 0; elcr[1] = 0; for(i = 0; i < 4; i++) { irq_num = pci_irqs[i]; hd->config[0x60 + i] = irq_num; elcr[irq_num >> 3] |= (1 << (irq_num & 7)); } for(devfn = 0; devfn < 256; devfn++) { d = b->device[devfn]; if (!d) continue; if (d->config[PCI_INTERRUPT_PIN]) { irq_num = 0; irq_num = bus_map_irq(d, irq_num); pic_irq = hd->config[0x60 + irq_num]; if (pic_irq < 16) { d->config[PCI_INTERRUPT_LINE] = pic_irq; } } } }