dosbox-x/shaders/CRT-simple.D3D.fx

199 lines
7.4 KiB
HLSL

/*
* CRT-simple shader
*
* Copyright (C) 2011 DOLLS. Based on cgwg's CRT shader.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* Direct3D port by gulikoza at users.sourceforge.net
*
*/
#include "Scaling.inc"
// The name of this effect
string name : NAME = "CRTFX";
float scaling : SCALING = 1.0;
// Enable screen curvature.
#define CURVATURE
// Controls the intensity of the barrel distortion used to emulate the
// curvature of a CRT. 0.0 is perfectly flat, 1.0 is annoyingly
// distorted, higher values are increasingly ridiculous.
#define distortion 0.05
// Simulate a CRT gamma of 2.4.
#define inputGamma 2.4
// Compensate for the standard sRGB gamma of 2.2.
#define outputGamma 2.2
// Macros.
#define TEX2D(c) pow(tex2D(SourceBorderSampler, (c)), inputGamma)
#define PI 3.141592653589
//
// Techniques
//
// combineTechnique: Final combine steps. Outputs to destination frame buffer
string combineTechique : COMBINETECHNIQUE = "CRTFX";
// preprocessTechnique: PreProcessing steps. Outputs to WorkingTexture
//string preprocessTechique : PREPROCESSTECHNIQUE = "";
struct VS_OUTPUT_PRODUCT
{
float4 Position : POSITION;
float2 pixel0 : TEXCOORD0;
float2 abspos : TEXCOORD1;
};
sampler SourceBorderSampler = sampler_state {
Texture = (SourceTexture);
MinFilter = POINT;
MagFilter = POINT;
MipFilter = NONE;
AddressU = Border;
AddressV = Border;
SRGBTEXTURE = FALSE;
};
// vertex shader
VS_OUTPUT_PRODUCT VS_Product(
float3 Position : POSITION,
float2 TexCoord : TEXCOORD0)
{
VS_OUTPUT_PRODUCT Out = (VS_OUTPUT_PRODUCT)0;
// Do the standard vertex processing.
Out.Position = mul(half4(Position, 1), WorldViewProjection);
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
// Texture coords.
Out.pixel0 = TexCoord;
// Resulting X pixel-coordinate of the pixel we're drawing.
// Assumes (-0.5, 0.5) quad and output size in World matrix
// as currently done in DOSBox D3D patch
Out.abspos = float2((Position.x + 0.5) * World._11, (Position.y - 0.5) * (-World._22));
return Out;
}
// Apply radial distortion to the given coordinate.
float2 radialDistortion(float2 coord, float2 pos)
{
pos /= float2(World._11, World._22);
float2 cc = pos - 0.5;
float dist = dot(cc, cc) * distortion;
return coord * (pos + cc * (1.0 + dist) * dist) / pos;
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
float4 scanlineWeights(float distance, float4 color)
{
// The "width" of the scanline beam is set as 2*(1 + x^4) for
// each RGB channel.
float4 wid = 2.0 + 2.0 * pow(color, 4.0);
// The "weights" lines basically specify the formula that gives
// you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
float4 weights = distance / 0.3;
return 1.4 * exp(-pow(weights * rsqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
}
half4 PS_Product ( in VS_OUTPUT_PRODUCT input ) : COLOR
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
// Texture coordinates of the texel containing the active pixel.
#ifdef CURVATURE
float2 xy = radialDistortion(input.pixel0, input.abspos);
#else
float2 xy = input.pixel0;
#endif
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
float2 ratio_scale = xy * SourceDims - 0.5;
float2 uv_ratio = frac(ratio_scale);
// Snap to the center of the underlying texel.
xy = (floor(ratio_scale) + 0.5) / SourceDims;
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel.
float4 col = TEX2D(xy);
float4 col2 = TEX2D(xy + float2(0.0, TexelSize.y));
// Calculate the influence of the current and next scanlines on
// the current pixel.
float4 weights = scanlineWeights(uv_ratio.y, col);
float4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
float3 mul_res = (col * weights + col2 * weights2).rgb;
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
float3 dotMaskWeights = lerp(
float3(1.0, 0.7, 1.0),
float3(0.7, 1.0, 0.7),
floor(input.abspos.x % 2.0)
);
mul_res *= dotMaskWeights;
return half4(pow(mul_res, 1.0 / outputGamma), 1.0);
}
technique CRTFX
{
pass P0
{
// shaders
VertexShader = compile vs_3_0 VS_Product();
PixelShader = compile ps_3_0 PS_Product();
AlphaBlendEnable = FALSE;
ColorWriteEnable = RED|GREEN|BLUE|ALPHA;
SRGBWRITEENABLE = FALSE;
}
}