2025-01-17 14:12:42 -08:00

654 lines
19 KiB
C++

/*
* Copyright (C) 2002-2021 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef DOSBOX_CPU_H
#define DOSBOX_CPU_H
#include "regs.h"
#define CPU_AUTODETERMINE_NONE 0x00
#define CPU_AUTODETERMINE_CORE 0x01
#define CPU_AUTODETERMINE_CYCLES 0x02
#define CPU_AUTODETERMINE_SHIFT 0x02
#define CPU_AUTODETERMINE_MASK 0x03
#define CPU_CYCLES_LOWER_LIMIT 200
/* NTS: MIXED is not EXPERIMENTAL. Do not enable EXPERIMENTAL level instructions in "auto" aka MIXED mode.
* For example, FISTTP is a Pentium 4 SSE3 instruction, which does not belong in MIXED mode, but users
* have requested it's addition for some 256-byte DOS demos that use it. */
#define CPU_ARCHTYPE_EXPERIMENTAL 0xff
#define CPU_ARCHTYPE_MIXED 0xfe
#define CPU_ARCHTYPE_8086 0x05
#define CPU_ARCHTYPE_80186 0x15
#define CPU_ARCHTYPE_286 0x25
#define CPU_ARCHTYPE_386 0x35
#define CPU_ARCHTYPE_486OLD 0x40
#define CPU_ARCHTYPE_486NEW 0x45
#define CPU_ARCHTYPE_PENTIUM 0x50
#define CPU_ARCHTYPE_PMMXSLOW 0x55
#define CPU_ARCHTYPE_PPROSLOW 0x60
#define CPU_ARCHTYPE_PENTIUMII 0x65
#define CPU_ARCHTYPE_PENTIUMIII 0x6A
#define FPU_ARCHTYPE_8087 0x00
#define FPU_ARCHTYPE_287 0x20
#define FPU_ARCHTYPE_387 0x30
#define FPU_ARCHTYPE_BEST 0xfe
#define FPH_ARCHTYPE_EXPERIMENTAL 0xff
/* CPU Cycle Timing */
extern cpu_cycles_count_t CPU_Cycles;
extern cpu_cycles_count_t CPU_CycleLeft;
extern cpu_cycles_count_t CPU_CycleMax;
extern cpu_cycles_count_t CPU_OldCycleMax;
extern cpu_cycles_count_t CPU_CyclePercUsed;
extern cpu_cycles_count_t CPU_CycleLimit;
extern cpu_cycles_count_t CPU_IODelayRemoved;
extern cpu_cycles_count_t CPU_CyclesSet;
extern unsigned char CPU_AutoDetermineMode;
extern char core_mode[16];
extern bool CPU_CycleAutoAdjust;
extern bool CPU_SkipCycleAutoAdjust;
extern bool enable_weitek;
extern unsigned char CPU_ArchitectureType;
extern unsigned char FPU_ArchitectureType;
extern unsigned int CPU_PrefetchQueueSize;
/* Some common Defines */
/* A CPU Handler */
typedef Bits (CPU_Decoder)(void);
extern CPU_Decoder * cpudecoder;
Bits CPU_Core_Normal_Run(void);
Bits CPU_Core_Normal_Trap_Run(void);
Bits CPU_Core_Simple_Run(void);
Bits CPU_Core_Simple_Trap_Run(void);
Bits CPU_Core_Full_Run(void);
Bits CPU_Core_Dyn_X86_Run(void);
Bits CPU_Core_Dyn_X86_Trap_Run(void);
Bits CPU_Core_Dynrec_Run(void);
Bits CPU_Core_Dynrec_Trap_Run(void);
Bits CPU_Core_Prefetch_Run(void);
Bits CPU_Core_Prefetch_Trap_Run(void);
Bits CPU_Core286_Normal_Run(void);
Bits CPU_Core286_Normal_Trap_Run(void);
Bits CPU_Core8086_Normal_Run(void);
Bits CPU_Core8086_Normal_Trap_Run(void);
Bits CPU_Core286_Prefetch_Run(void);
Bits CPU_Core8086_Prefetch_Run(void);
#if defined(C_HAVE_LINUX_KVM_X86)
Bits CPU_Core_KVM_Run(void);
Bits CPU_Core_KVM_Trap_Run(void);
#endif
void CPU_Enable_SkipAutoAdjust(void);
void CPU_Disable_SkipAutoAdjust(void);
void CPU_Reset_AutoAdjust(void);
//CPU Stuff
extern uint16_t parity_lookup[256];
void CPU_SetCPL(Bitu newcpl);
bool CPU_LLDT(Bitu selector);
bool CPU_LTR(Bitu selector);
void CPU_LIDT(Bitu limit,Bitu base);
void CPU_LGDT(Bitu limit,Bitu base);
Bitu CPU_STR(void);
Bitu CPU_SLDT(void);
Bitu CPU_SIDT_base(void);
Bitu CPU_SIDT_limit(void);
Bitu CPU_SGDT_base(void);
Bitu CPU_SGDT_limit(void);
void CPU_ARPL(Bitu & dest_sel,Bitu src_sel);
void CPU_LAR(Bitu selector,Bitu & ar);
void CPU_LSL(Bitu selector,Bitu & limit);
void CPU_SET_CRX(Bitu cr,Bitu value);
bool CPU_WRITE_CRX(Bitu cr,Bitu value);
Bitu CPU_GET_CRX(Bitu cr);
bool CPU_READ_CRX(Bitu cr,uint32_t & retvalue);
bool CPU_WRITE_DRX(Bitu dr,Bitu value);
bool CPU_READ_DRX(Bitu dr,uint32_t & retvalue);
bool CPU_WRITE_TRX(Bitu tr,Bitu value);
bool CPU_READ_TRX(Bitu tr,uint32_t & retvalue);
Bitu CPU_SMSW(void);
bool CPU_LMSW(Bitu word);
void CPU_VERR(Bitu selector);
void CPU_VERW(Bitu selector);
void CPU_JMP(bool use32,Bitu selector,Bitu offset,uint32_t oldeip);
void CPU_CALL(bool use32,Bitu selector,Bitu offset,uint32_t oldeip);
void CPU_RET(bool use32,Bitu bytes,uint32_t oldeip);
void CPU_IRET(bool use32,uint32_t oldeip);
void CPU_HLT(uint32_t oldeip);
bool CPU_POPF(Bitu use32);
bool CPU_PUSHF(Bitu use32);
bool CPU_CLI(void);
bool CPU_STI(void);
bool CPU_IO_Exception(Bitu port,Bitu size);
void CPU_ENTER(bool use32,Bitu bytes,Bitu level);
void init_vm86_fake_io();
#define CPU_INT_SOFTWARE 0x1
#define CPU_INT_EXCEPTION 0x2
#define CPU_INT_HAS_ERROR 0x4
#define CPU_INT_NOIOPLCHECK 0x8
extern bool CPU_NMI_gate;
extern bool CPU_NMI_active;
extern bool CPU_NMI_pending;
extern bool do_seg_limits;
void CPU_Interrupt(Bitu num,Bitu type,uint32_t oldeip);
void CPU_Check_NMI();
void CPU_Raise_NMI();
void CPU_NMI_Interrupt();
static INLINE void CPU_HW_Interrupt(Bitu num) {
CPU_Interrupt(num,0,reg_eip);
}
static INLINE void CPU_SW_Interrupt(Bitu num,uint32_t oldeip) {
CPU_Interrupt(num,CPU_INT_SOFTWARE,oldeip);
}
static INLINE void CPU_SW_Interrupt_NoIOPLCheck(Bitu num,uint32_t oldeip) {
CPU_Interrupt(num,CPU_INT_SOFTWARE|CPU_INT_NOIOPLCHECK,oldeip);
}
bool CPU_PrepareException(Bitu which,Bitu error);
void CPU_Exception(Bitu which,Bitu error=0);
void CPU_DebugException(uint32_t triggers,Bitu oldeip);
bool CPU_SetSegGeneral(SegNames seg,uint16_t value);
bool CPU_PopSeg(SegNames seg,bool use32);
bool CPU_CPUID(void);
uint16_t CPU_Pop16(void);
uint32_t CPU_Pop32(void);
void CPU_Push16(uint16_t value);
void CPU_Push32(uint32_t value);
void CPU_SetFlags(Bitu word,Bitu mask);
#define EXCEPTION_DB 1
#define EXCEPTION_UD 6u
#define EXCEPTION_DF 8u
#define EXCEPTION_TS 10u
#define EXCEPTION_NP 11u
#define EXCEPTION_SS 12u
#define EXCEPTION_GP 13u
#define EXCEPTION_PF 14u
#define CR0_PROTECTION 0x00000001u
#define CR0_MONITORPROCESSOR 0x00000002u
#define CR0_FPUEMULATION 0x00000004u
#define CR0_TASKSWITCH 0x00000008u
#define CR0_FPUPRESENT 0x00000010u
#define CR0_WRITEPROTECT 0x00010000u
#define CR0_PAGING 0x80000000u
// reasons for triggering a debug exception
#define DBINT_BP0 0x00000001
#define DBINT_BP1 0x00000002
#define DBINT_BP2 0x00000004
#define DBINT_BP3 0x00000008
#define DBINT_GD 0x00002000
#define DBINT_STEP 0x00004000
#define DBINT_TASKSWITCH 0x00008000
// *********************************************************************
// Descriptor
// *********************************************************************
#define DESC_INVALID 0x00u
#define DESC_286_TSS_A 0x01u
#define DESC_LDT 0x02u
#define DESC_286_TSS_B 0x03u
#define DESC_286_CALL_GATE 0x04u
#define DESC_TASK_GATE 0x05u
#define DESC_286_INT_GATE 0x06u
#define DESC_286_TRAP_GATE 0x07u
#define DESC_386_TSS_A 0x09u
#define DESC_386_TSS_B 0x0bu
#define DESC_386_CALL_GATE 0x0cu
#define DESC_386_INT_GATE 0x0eu
#define DESC_386_TRAP_GATE 0x0fu
/* EU/ED Expand UP/DOWN RO/RW Read Only/Read Write NA/A Accessed */
#define DESC_DATA_EU_RO_NA 0x10u
#define DESC_DATA_EU_RO_A 0x11u
#define DESC_DATA_EU_RW_NA 0x12u
#define DESC_DATA_EU_RW_A 0x13u
#define DESC_DATA_ED_RO_NA 0x14u
#define DESC_DATA_ED_RO_A 0x15u
#define DESC_DATA_ED_RW_NA 0x16u
#define DESC_DATA_ED_RW_A 0x17u
/* N/R Readable NC/C Confirming A/NA Accessed */
#define DESC_CODE_N_NC_A 0x18u
#define DESC_CODE_N_NC_NA 0x19u
#define DESC_CODE_R_NC_A 0x1au
#define DESC_CODE_R_NC_NA 0x1bu
#define DESC_CODE_N_C_A 0x1cu
#define DESC_CODE_N_C_NA 0x1du
#define DESC_CODE_R_C_A 0x1eu
#define DESC_CODE_R_C_NA 0x1fu
#ifdef _MSC_VER
#pragma pack (1)
#endif
struct S_Descriptor {
#ifdef WORDS_BIGENDIAN
uint32_t base_0_15 :16;
uint32_t limit_0_15 :16;
uint32_t base_24_31 :8;
uint32_t g :1;
uint32_t big :1;
uint32_t r :1;
uint32_t avl :1;
uint32_t limit_16_19 :4;
uint32_t p :1;
uint32_t dpl :2;
uint32_t type :5;
uint32_t base_16_23 :8;
#else
uint32_t limit_0_15 :16;
uint32_t base_0_15 :16;
uint32_t base_16_23 :8;
uint32_t type :5;
uint32_t dpl :2;
uint32_t p :1;
uint32_t limit_16_19 :4;
uint32_t avl :1;
uint32_t r :1;
uint32_t big :1;
uint32_t g :1;
uint32_t base_24_31 :8;
#endif
}GCC_ATTRIBUTE(packed);
struct G_Descriptor {
#ifdef WORDS_BIGENDIAN
uint32_t selector: 16;
uint32_t offset_0_15 :16;
uint32_t offset_16_31 :16;
uint32_t p :1;
uint32_t dpl :2;
uint32_t type :5;
uint32_t reserved :3;
uint32_t paramcount :5;
#else
uint32_t offset_0_15 :16;
uint32_t selector :16;
uint32_t paramcount :5;
uint32_t reserved :3;
uint32_t type :5;
uint32_t dpl :2;
uint32_t p :1;
uint32_t offset_16_31 :16;
#endif
} GCC_ATTRIBUTE(packed);
struct TSS_16 {
uint16_t back; /* Back link to other task */
uint16_t sp0; /* The CK stack pointer */
uint16_t ss0; /* The CK stack selector */
uint16_t sp1; /* The parent KL stack pointer */
uint16_t ss1; /* The parent KL stack selector */
uint16_t sp2; /* Unused */
uint16_t ss2; /* Unused */
uint16_t ip; /* The instruction pointer */
uint16_t flags; /* The flags */
uint16_t ax, cx, dx, bx; /* The general purpose registers */
uint16_t sp, bp, si, di; /* The special purpose registers */
uint16_t es; /* The extra selector */
uint16_t cs; /* The code selector */
uint16_t ss; /* The application stack selector */
uint16_t ds; /* The data selector */
uint16_t ldt; /* The local descriptor table */
} GCC_ATTRIBUTE(packed);
struct TSS_32 {
uint32_t back; /* Back link to other task */
uint32_t esp0; /* The CK stack pointer */
uint32_t ss0; /* The CK stack selector */
uint32_t esp1; /* The parent KL stack pointer */
uint32_t ss1; /* The parent KL stack selector */
uint32_t esp2; /* Unused */
uint32_t ss2; /* Unused */
uint32_t cr3; /* The page directory pointer */
uint32_t eip; /* The instruction pointer */
uint32_t eflags; /* The flags */
uint32_t eax, ecx, edx, ebx; /* The general purpose registers */
uint32_t esp, ebp, esi, edi; /* The special purpose registers */
uint32_t es; /* The extra selector */
uint32_t cs; /* The code selector */
uint32_t ss; /* The application stack selector */
uint32_t ds; /* The data selector */
uint32_t fs; /* And another extra selector */
uint32_t gs; /* ... and another one */
uint32_t ldt; /* The local descriptor table */
} GCC_ATTRIBUTE(packed);
/* Last prefix encountered, needed for Pentium III "mandatory opcode prefixes" needed to differentiate SSE instructions given the opcode.
* Keeping it small and sequential should help your C++ compiler optimize the switch statement you're probably going to use in the normal core code. */
enum {
MP_NONE=0,
MP_66,
MP_F2,
MP_F3
};
#ifdef _MSC_VER
#pragma pack()
#endif
class Descriptor
{
public:
Descriptor() { saved.fill[0]=saved.fill[1]=0; }
void Load(LinearPt address);
void Save(LinearPt address);
LinearPt GetBase (void) const {
if (CPU_ArchitectureType >= CPU_ARCHTYPE_386) {
return (LinearPt)(
((LinearPt)saved.seg.base_24_31 << (LinearPt)24U) |
((LinearPt)saved.seg.base_16_23 << (LinearPt)16U) |
(LinearPt)saved.seg.base_0_15);
}
else {
return (LinearPt)(
((LinearPt)saved.seg.base_16_23 << (LinearPt)16U) |
(LinearPt)saved.seg.base_0_15);
}
}
bool GetExpandDown (void) {
#if 0
uint32_t limit_0_15 :16;
uint32_t base_0_15 :16;
uint32_t base_16_23 :8;
uint32_t type :5;
uint32_t dpl :2;
uint32_t p :1;
uint32_t limit_16_19 :4;
uint32_t avl :1;
uint32_t r :1;
uint32_t big :1;
uint32_t g :1;
uint32_t base_24_31 :8;
#endif
if (!(saved.seg.type & 0x10)) /* must be storage type descriptor */
return false;
/* type: 1 0 E W A for data */
/* type: 1 1 C R A for code */
if (saved.seg.type & 0x08)
return false;
/* it's data. return the 'E' bit */
return (saved.seg.type & 4) != 0;
}
Bitu GetLimit (void) const {
const Bitu limit = ((Bitu)saved.seg.limit_16_19 << (Bitu)16U) | (Bitu)saved.seg.limit_0_15;
if (saved.seg.g && CPU_ArchitectureType >= CPU_ARCHTYPE_386) return ((Bitu)limit << (Bitu)12U) | (Bitu)0xFFFU;
return limit;
}
Bitu GetOffset(void) const {
if (CPU_ArchitectureType >= CPU_ARCHTYPE_386)
return ((Bitu)saved.gate.offset_16_31 << (Bitu)16U) | (Bitu)saved.gate.offset_0_15;
else
return (Bitu)saved.gate.offset_0_15;
}
Bitu GetSelector(void) const {
return saved.gate.selector;
}
Bitu Type(void) const {
return saved.seg.type;
}
Bitu Conforming(void) const {
return saved.seg.type & 8U;
}
Bitu DPL(void) const {
return saved.seg.dpl;
}
Bitu Big(void) const {
return saved.seg.big;
}
public:
union {
S_Descriptor seg;
G_Descriptor gate;
uint32_t fill[2];
} saved;
};
class DescriptorTable {
public:
virtual ~DescriptorTable() noexcept = default;
LinearPt GetBase (void) const { return table_base; }
Bitu GetLimit (void) const { return table_limit; }
void SetBase (LinearPt _base) { table_base = _base; }
void SetLimit (Bitu _limit) { table_limit= _limit; }
bool GetDescriptor (Bitu selector, Descriptor& desc) {
selector&=~7U;
if (selector>=table_limit) return false;
desc.Load((LinearPt)(table_base+selector));
return true;
}
virtual void SaveState( std::ostream& stream );
virtual void LoadState( std::istream& stream );
protected:
LinearPt table_base;
Bitu table_limit;
};
class GDTDescriptorTable : public DescriptorTable {
public:
bool GetDescriptor(Bitu selector, Descriptor& desc) {
Bitu address=selector & ~7U;
if (selector & 4U) {
if (address>=ldt_limit) return false;
desc.Load((LinearPt)(ldt_base+address));
return true;
} else {
if (address>=table_limit) return false;
desc.Load((LinearPt)(table_base+address));
return true;
}
}
bool SetDescriptor(Bitu selector, Descriptor& desc) {
Bitu address=selector & ~7U;
if (selector & 4U) {
if (address>=ldt_limit) return false;
desc.Save((LinearPt)(ldt_base+address));
return true;
} else {
if (address>=table_limit) return false;
desc.Save((LinearPt)(table_base+address));
return true;
}
}
Bitu SLDT(void) const {
return ldt_value;
}
bool LLDT(Bitu value) {
if ((value&0xfffc)==0) {
ldt_value=0;
ldt_base=0;
ldt_limit=0;
return true;
}
Descriptor desc;
if (!GetDescriptor(value,desc)) return !CPU_PrepareException(EXCEPTION_GP,value);
if (desc.Type()!=DESC_LDT) return !CPU_PrepareException(EXCEPTION_GP,value);
if (!desc.saved.seg.p) return !CPU_PrepareException(EXCEPTION_NP,value);
ldt_base=desc.GetBase();
ldt_limit=desc.GetLimit();
ldt_value=value;
return true;
}
void SaveState( std::ostream& stream ) override;
void LoadState( std::istream& stream ) override;
private:
LinearPt ldt_base;
Bitu ldt_limit;
Bitu ldt_value;
};
class TSS_Descriptor : public Descriptor {
public:
Bitu IsBusy(void) const {
return saved.seg.type & 2;
}
Bitu Is386(void) const {
return saved.seg.type & 8;
}
void SetBusy(const bool busy) {
if (busy) saved.seg.type|=2U;
else saved.seg.type&=(~2U); /* -Wconversion cannot silence without hard-coding ~2U & 0x1F */
}
};
struct CPUBlock {
Bitu cpl; /* Current Privilege */
Bitu mpl;
Bitu cr0;
Bitu cr4;
bool pmode; /* Is Protected mode enabled */
GDTDescriptorTable gdt;
DescriptorTable idt;
struct {
Bitu eflags;
} masks;
struct {
uint32_t mask,notmask;
bool big;
} stack;
struct {
bool big;
} code;
struct {
Bitu cs,eip;
CPU_Decoder * old_decoder;
} hlt;
struct {
Bitu which,error;
} exception;
Bits direction;
bool trap_skip;
uint32_t drx[8];
uint32_t trx[8];
};
extern CPUBlock cpu;
// SSE instructions are available if bit 9 is on in CR4, also enables FXSAVE and FXRESTOR
static INLINE bool CPU_SSE(void) {
// TODO: The architecture test may be replaced with a general global variable that says "sse" allowed
return (cpu.cr4 & 0x200u) && (CPU_ArchitectureType >= CPU_ARCHTYPE_PENTIUMIII);
}
// SSE exceptions enabled by bit 10
static INLINE bool CPU_SSE_exceptions(void) {
return (cpu.cr4 & 0x400u) && CPU_SSE();
}
static INLINE void CPU_SetFlagsd(const Bitu word) {
const Bitu mask=cpu.cpl ? FMASK_NORMAL : FMASK_ALL;
CPU_SetFlags(word,mask);
}
static INLINE void CPU_SetFlagsw(const Bitu word) {
const Bitu mask=(cpu.cpl ? FMASK_NORMAL : FMASK_ALL) & 0xffff;
CPU_SetFlags(word,mask);
}
Bitu CPU_ForceV86FakeIO_In(Bitu port,Bitu len);
void CPU_ForceV86FakeIO_Out(Bitu port,Bitu val,Bitu len);
/* dynamic core allocation in effect */
enum dyncore_alloc_t {
DYNCOREALLOC_NONE=0,
DYNCOREALLOC_MALLOC, /* allocated with malloc(), base pointer and size rounded up to page size */
DYNCOREALLOC_MMAP_ANON, /* allocated with mmap() and MAP_ANONYMOUS|MAP_PRIVATE */
DYNCOREALLOC_SHM_MMAP, /* allocated as a file in shared memory (i.e. /dev/shm) using shmget */
DYNCOREALLOC_MEMFD, /* allocated with a Linux memfd handle */
DYNCOREALLOC_VIRTUALALLOC, /* allocated with VirtualAlloc() (in Windows) */
DYNCOREALLOC_MAX
};
/* dynamic core method in effect */
enum dyncore_method_t {
DYNCOREM_NONE=0,
DYNCOREM_RWX, /* map with all read/write/execute permissions at once */
DYNCOREM_MPROTECT_RW_RX, /* map with read/execute, mprotect to read/write when changes needed, then mprotect back */
DYNCOREM_DUAL_RW_X, /* map twice in process space: once with read/write permissions, once with execute permissions */
DYNCOREM_MAX
};
/* dynamic core considerations */
#define DYNCOREF_W_XOR_X (1u << 0u) /* write-xor-execute policy in effect */
#define DYNCOREF_IMPOSSIBLE (1u << 1u) /* system policy makes dynamic core generation impossible (for example, SELinux) */
typedef unsigned int dyncore_flags_t;
extern dyncore_alloc_t dyncore_alloc;
extern dyncore_flags_t dyncore_flags;
extern dyncore_method_t dyncore_method;
int64_t CPU_RDTSC();
void RDTSC_rebase();
#endif