dosbox-x/src/hardware/cmos.cpp
2022-01-25 01:38:24 -05:00

645 lines
22 KiB
C++

/*
* Copyright (C) 2002-2021 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <time.h>
#include <math.h>
#include "dosbox.h"
#include "timer.h"
#include "cpu.h"
#include "pic.h"
#include "inout.h"
#include "mem.h"
#include "bios_disk.h"
#include "setup.h"
#include "cross.h" //fmod on certain platforms
#include "control.h"
bool date_host_forced=false;
#if defined (WIN32) && !defined (__MINGW32__)
#include "sys/timeb.h"
#else
#include "sys/time.h"
#endif
// sigh... Windows doesn't know gettimeofday
#if defined (WIN32) && !defined (__MINGW32__)
typedef Bitu suseconds_t;
#if !(defined (C_SDL2) && defined(SDL_DOSBOX_X_IME))
struct timeval {
time_t tv_sec;
suseconds_t tv_usec;
};
#endif
static void gettimeofday (timeval* ptime, void* pdummy) {
struct _timeb thetime;
_ftime(&thetime);
ptime->tv_sec = thetime.time;
ptime->tv_usec = (Bitu)thetime.millitm;
}
#endif
static struct {
uint8_t regs[0x40];
bool nmi;
bool bcd;
bool ampm; // am/pm mode (false = 24h mode)
bool lock; // lock bit set (no updates)
uint8_t reg;
struct {
bool enabled;
uint8_t div;
float delay;
bool acknowledged;
} timer;
struct {
double timer;
double ended;
double alarm;
} last;
bool update_ended;
time_t time_diff; // difference between real UTC and DOSbox UTC
struct timeval locktime; // UTC time of setting lock bit
struct timeval safetime; // UTC time of last safe time
} cmos;
static void cmos_timerevent(Bitu val) {
(void)val;//UNUSED
if (cmos.timer.acknowledged) {
cmos.timer.acknowledged=false;
PIC_ActivateIRQ(8);
}
if (cmos.timer.enabled) {
double index = PIC_FullIndex();
double remd = fmod(index, (double)cmos.timer.delay);
PIC_AddEvent(cmos_timerevent, (float)((double)cmos.timer.delay - remd));
if(index >= (cmos.last.timer + cmos.timer.delay)) {
cmos.last.timer = index;
cmos.regs[0xc] |= 0x40; // Periodic Interrupt Flag (PF)
}
if(index >= (cmos.last.ended + 1000)) {
cmos.last.ended = index;
cmos.regs[0xc] |= 0x10; // Update-Ended Interrupt Flag (UF)
}
}
}
static void cmos_checktimer(void) {
PIC_RemoveEvents(cmos_timerevent);
if (cmos.timer.div<=2) cmos.timer.div+=7;
cmos.timer.delay=(1000.0f/(32768.0f / (1 << (cmos.timer.div - 1))));
if (!cmos.timer.div || !cmos.timer.enabled) return;
LOG(LOG_PIT,LOG_NORMAL)("RTC Timer at %.2f hz",1000.0/cmos.timer.delay);
// PIC_AddEvent(cmos_timerevent,cmos.timer.delay);
/* A rtc is always running */
double remd=fmod(PIC_FullIndex(),(double)cmos.timer.delay);
PIC_AddEvent(cmos_timerevent,(float)((double)cmos.timer.delay-remd)); //Should be more like a real pc. Check
// status reg A reading with this (and with other delays actually)
}
void cmos_selreg(Bitu port,Bitu val,Bitu iolen) {
(void)port;//UNUSED
(void)iolen;//UNUSED
if (machine != MCH_PCJR) {
/* bit 7 also controls NMI masking, if set, NMI is disabled */
CPU_NMI_gate = (val&0x80) ? false : true;
}
cmos.reg=val & 0x3f;
cmos.nmi=(val & 0x80)>0;
}
static void cmos_writereg(Bitu port,Bitu val,Bitu iolen) {
(void)port;//UNUSED
(void)iolen;//UNUSED
if (date_host_forced && (cmos.reg <= 0x09 || cmos.reg == 0x32)) { // date/time related registers
if (cmos.bcd) // values supplied are BCD, convert to binary values
{
if ((val & 0xf0) > 0x90 || (val & 0x0f) > 0x09) return; // invalid BCD value
// other checks for valid values are done in case-switch
// convert pm hours differently (bcd 81-92 corresponds to hex 81-8c)
if (cmos.reg == 0x04 && val >= 0x80)
{
val = (val < 90) ? 0x80 : 0x8a + (val & 0x0f);
}
else
{
val = ((val >> 4) * 10) + (val & 0x0f);
}
}
struct tm *loctime; // local dosbox time (based on dosbox UTC)
if (cmos.lock) // if locked, use locktime instead of current time
{
loctime = localtime((const time_t*)&cmos.locktime.tv_sec);
}
else // not locked, use current time
{
struct timeval curtime;
gettimeofday(&curtime, NULL);
curtime.tv_sec += cmos.time_diff;
loctime = localtime((const time_t*)&curtime.tv_sec);
}
switch (cmos.reg)
{
case 0x00: /* Seconds */
if (val > 59) return; // invalid seconds value
loctime->tm_sec = (int)val;
break;
case 0x02: /* Minutes */
if (val > 59) return; // invalid minutes value
loctime->tm_min = (int)val;
break;
case 0x04: /* Hours */
if (cmos.ampm) // 12h am/pm mode
{
if ((val > 12 && val < 0x81) || val > 0x8c) return; // invalid hour value
if (val > 12) val -= (0x80-12); // convert pm to 24h
}
else // 24h mode
{
if (val > 23) return; // invalid hour value
}
loctime->tm_hour = (int)val;
break;
case 0x06: /* Day of week */
// seems silly to set this, as it is calculated? ignore for now
break;
case 0x07: /* Date of month */
if (val > 31) return; // invalid date value (mktime() should catch the rest)
loctime->tm_mday = (int)val;
break;
case 0x08: /* Month */
if (val > 12) return; // invalid month value
loctime->tm_mon = (int)val;
break;
case 0x09: /* Year */
loctime->tm_year = (int)val;
break;
case 0x32: /* Century */
if (val < 19) return; // invalid century value?
loctime->tm_year += (int)((val * 100) - 1900);
break;
case 0x01: /* Seconds Alarm */
case 0x03: /* Minutes Alarm */
case 0x05: /* Hours Alarm */
LOG(LOG_BIOS,LOG_NORMAL)("CMOS:Writing to an alarm register");
cmos.regs[cmos.reg] = (uint8_t)val;
return; // done
}
time_t newtime = mktime(loctime); // convert new local time back to dosbox UTC
if (newtime != (time_t)-1)
{
if (!cmos.lock) // no lock, takes immediate effect
{
cmos.time_diff = newtime - time(NULL); // calculate new diff
}
else
{
cmos.locktime.tv_sec = newtime; // store for later use
// no need to set usec, we don't use it
}
}
return;
}
switch (cmos.reg) {
case 0x00: /* Seconds */
case 0x02: /* Minutes */
case 0x04: /* Hours */
case 0x06: /* Day of week */
case 0x07: /* Date of month */
case 0x08: /* Month */
case 0x09: /* Year */
case 0x32: /* Century */
/* Ignore writes to change alarm */
break;
case 0x01: /* Seconds Alarm */
case 0x03: /* Minutes Alarm */
case 0x05: /* Hours Alarm */
LOG(LOG_BIOS,LOG_NORMAL)("CMOS:Writing to an alarm register");
cmos.regs[cmos.reg]=(uint8_t)val;
break;
case 0x0a: /* Status reg A */
cmos.regs[cmos.reg]=val & 0x7f;
if ((val & 0x70)!=0x20) LOG(LOG_BIOS,LOG_ERROR)("CMOS:Illegal 22 stage divider value");
cmos.timer.div=(val & 0xf);
cmos_checktimer();
break;
case 0x0b: /* Status reg B */
if(date_host_forced) {
bool waslocked = cmos.lock;
cmos.ampm = !(val & 0x02);
cmos.bcd = !(val & 0x04);
cmos.timer.enabled = (val & 0x40) > 0;
cmos.lock = (val & 0x80) != 0;
if (cmos.lock) // if locked, set locktime for later use
{
if (!waslocked) // if already locked, no further action
{
// locked for the first time, calculate dosbox UTC
gettimeofday(&cmos.locktime, NULL);
cmos.locktime.tv_sec += cmos.time_diff;
}
}
else if (waslocked) // time was locked, now unlock
{
// calculate new diff between real UTC and dosbox UTC
cmos.time_diff = cmos.locktime.tv_sec - time(NULL);
}
cmos.regs[cmos.reg] = (uint8_t)val;
cmos_checktimer();
} else {
cmos.bcd=!(val & 0x4);
cmos.regs[cmos.reg]=(uint8_t)val;
cmos.timer.enabled=(val & 0x40)>0;
cmos_checktimer();
}
break;
case 0x0c: /* Status reg C */
break;
case 0x0d: /* Status reg D */
if(!date_host_forced) {
cmos.regs[cmos.reg]=val & 0x80; /*Bit 7=1:RTC Power on*/
}
break;
case 0x0f: /* Shutdown status byte */
cmos.regs[cmos.reg]=val & 0x7f;
break;
default:
LOG(LOG_BIOS, LOG_NORMAL)("CMOS:Writing to register %x", cmos.reg);
cmos.regs[cmos.reg]=val & 0x7f;
}
}
unsigned char CMOS_GetShutdownByte() {
return cmos.regs[0x0F];
}
#define MAKE_RETURN(_VAL) ((unsigned char)(cmos.bcd ? (((((unsigned int)_VAL) / 10U) << 4U) | (((unsigned int)_VAL) % 10U)) : ((unsigned int)_VAL)))
static Bitu cmos_readreg(Bitu port,Bitu iolen) {
(void)port;//UNUSED
(void)iolen;//UNUSED
if (cmos.reg>0x3f) {
LOG(LOG_BIOS,LOG_ERROR)("CMOS:Read attempted from illegal register %x",cmos.reg);
return 0xff;
}
// JAL_20060817 - rewrote most of the date/time part
if (date_host_forced && (cmos.reg <= 0x09 || cmos.reg == 0x32)) { // date/time related registers
struct tm* loctime;
if (cmos.lock) // if locked, use locktime instead of current time
{
loctime = localtime((const time_t*)&cmos.locktime.tv_sec);
}
else // not locked, get current time
{
struct timeval curtime;
gettimeofday(&curtime, NULL);
// allow a little more leeway (1 sec) than the .244 sec officially given
if (curtime.tv_sec - cmos.safetime.tv_sec == 1 &&
curtime.tv_usec < cmos.safetime.tv_usec)
{
curtime = cmos.safetime; // within safe range, use safetime instead of current time
}
curtime.tv_sec += cmos.time_diff;
loctime = localtime((const time_t*)&curtime.tv_sec);
}
switch (cmos.reg)
{
case 0x00: // seconds
return MAKE_RETURN(loctime->tm_sec);
case 0x02: // minutes
return MAKE_RETURN(loctime->tm_min);
case 0x04: // hours
if (cmos.ampm && loctime->tm_hour > 12) // time pm, convert
{
loctime->tm_hour -= 12;
loctime->tm_hour += (cmos.bcd) ? 80 : 0x80;
}
return MAKE_RETURN(loctime->tm_hour);
case 0x06: /* Day of week */
return MAKE_RETURN(loctime->tm_wday + 1);
case 0x07: /* Date of month */
return MAKE_RETURN(loctime->tm_mday);
case 0x08: /* Month */
return MAKE_RETURN(loctime->tm_mon + 1);
case 0x09: /* Year */
return MAKE_RETURN(loctime->tm_year % 100);
case 0x32: /* Century */
return MAKE_RETURN(loctime->tm_year / 100 + 19);
case 0x01: /* Seconds Alarm */
case 0x03: /* Minutes Alarm */
case 0x05: /* Hours Alarm */
return MAKE_RETURN(cmos.regs[cmos.reg]);
}
}
Bitu drive_a, drive_b;
uint8_t hdparm;
time_t curtime;
struct tm *loctime;
/* Get the current time. */
curtime = time (NULL);
/* Convert it to local time representation. */
loctime = localtime (&curtime);
switch (cmos.reg) {
case 0x00: /* Seconds */
return MAKE_RETURN(loctime->tm_sec);
case 0x02: /* Minutes */
return MAKE_RETURN(loctime->tm_min);
case 0x04: /* Hours */
return MAKE_RETURN(loctime->tm_hour);
case 0x06: /* Day of week */
return MAKE_RETURN(loctime->tm_wday + 1);
case 0x07: /* Date of month */
return MAKE_RETURN(loctime->tm_mday);
case 0x08: /* Month */
return MAKE_RETURN(loctime->tm_mon + 1);
case 0x09: /* Year */
return MAKE_RETURN(loctime->tm_year % 100);
case 0x32: /* Century */
return MAKE_RETURN(loctime->tm_year / 100 + 19);
case 0x01: /* Seconds Alarm */
case 0x03: /* Minutes Alarm */
case 0x05: /* Hours Alarm */
return cmos.regs[cmos.reg];
case 0x0a: /* Status register A */
if(date_host_forced) {
// take bit 7 of reg b into account (if set, never updates)
gettimeofday (&cmos.safetime, NULL); // get current UTC time
if (cmos.lock || // if lock then never updated, so reading safe
cmos.safetime.tv_usec < (1000-244)) { // if 0, at least 244 usec should be available
return cmos.regs[0x0a]; // reading safe
} else {
return cmos.regs[0x0a] | 0x80; // reading not safe!
}
} else {
if (PIC_TickIndex()<0.002) {
return (cmos.regs[0x0a]&0x7f) | 0x80;
} else {
return (cmos.regs[0x0a]&0x7f);
}
}
case 0x0c: /* Status register C */
{
cmos.timer.acknowledged=true;
uint8_t val = cmos.regs[0xc];
if (cmos.timer.enabled && ((cmos.regs[0xc] & 0x40) > 0)) { // If both PF and PIE are 1
val |= 0x80; // Set Interrupt Request Flag (IRQF) to 1
}
else if(((cmos.regs[0xb] & 0x10) > 0) && ((cmos.regs[0xc] & 0x10) > 0)) { // If both UF and UIE are 1
val |= 0x80; // Set Interrupt Request Flag (IRQF) to 1
}
else if(((cmos.regs[0xb] & 0x20) > 0) && ((cmos.regs[0xc] & 0x20) > 0)) { // If both AF and AIE are 1
val |= 0x80; // Set Interrupt Request Flag (IRQF) to 1
}
cmos.regs[0xc] = 0; // All flags are cleared by reading the register
return val;
}
case 0x10: /* Floppy size */
drive_a = 0;
drive_b = 0;
if(imageDiskList[0] != NULL) drive_a = imageDiskList[0]->GetBiosType();
if(imageDiskList[1] != NULL) drive_b = imageDiskList[1]->GetBiosType();
return ((drive_a << 4) | (drive_b));
/* First harddrive info */
case 0x12:
/* NTS: DOSBox 0.74 mainline has these backwards: the upper nibble is the first hard disk,
the lower nibble is the second hard disk. It makes a big difference to stupid OS's like
Windows 95. */
hdparm = 0;
if(imageDiskList[3] != NULL) hdparm |= 0xf;
if(imageDiskList[2] != NULL) hdparm |= 0xf0;
// hdparm = 0;
return hdparm;
case 0x19:
if(imageDiskList[2] != NULL) return 47; /* User defined type */
return 0;
case 0x1b:
if(imageDiskList[2] != NULL) return (imageDiskList[2]->cylinders & 0xff);
return 0;
case 0x1c:
if(imageDiskList[2] != NULL) return ((imageDiskList[2]->cylinders & 0xff00)>>8);
return 0;
case 0x1d:
if(imageDiskList[2] != NULL) return (imageDiskList[2]->heads);
return 0;
case 0x1e:
if(imageDiskList[2] != NULL) return 0xff;
return 0;
case 0x1f:
if(imageDiskList[2] != NULL) return 0xff;
return 0;
case 0x20:
if(imageDiskList[2] != NULL) return (0xc0 | (((imageDiskList[2]->heads) > 8) << 3));
return 0;
case 0x21:
if(imageDiskList[2] != NULL) return (imageDiskList[2]->cylinders & 0xff);
return 0;
case 0x22:
if(imageDiskList[2] != NULL) return ((imageDiskList[2]->cylinders & 0xff00)>>8);
return 0;
case 0x23:
if(imageDiskList[2] != NULL) return (imageDiskList[2]->sectors);
return 0;
/* Second harddrive info */
case 0x1a:
if(imageDiskList[3] != NULL) return 47; /* User defined type */
return 0;
case 0x24:
if(imageDiskList[3] != NULL) return (imageDiskList[3]->cylinders & 0xff);
return 0;
case 0x25:
if(imageDiskList[3] != NULL) return ((imageDiskList[3]->cylinders & 0xff00)>>8);
return 0;
case 0x26:
if(imageDiskList[3] != NULL) return (imageDiskList[3]->heads);
return 0;
case 0x27:
if(imageDiskList[3] != NULL) return 0xff;
return 0;
case 0x28:
if(imageDiskList[3] != NULL) return 0xff;
return 0;
case 0x29:
if(imageDiskList[3] != NULL) return (0xc0 | (((imageDiskList[3]->heads) > 8) << 3));
return 0;
case 0x2a:
if(imageDiskList[3] != NULL) return (imageDiskList[3]->cylinders & 0xff);
return 0;
case 0x2b:
if(imageDiskList[3] != NULL) return ((imageDiskList[3]->cylinders & 0xff00)>>8);
return 0;
case 0x2c:
if(imageDiskList[3] != NULL) return (imageDiskList[3]->sectors);
return 0;
case 0x39:
return 0;
case 0x3a:
return 0;
case 0x0b: /* Status register B */
case 0x0d: /* Status register D */
case 0x0f: /* Shutdown status byte */
case 0x14: /* Equipment */
case 0x15: /* Base Memory KB Low Byte */
case 0x16: /* Base Memory KB High Byte */
case 0x17: /* Extended memory in KB Low Byte */
case 0x18: /* Extended memory in KB High Byte */
case 0x30: /* Extended memory in KB Low Byte */
case 0x31: /* Extended memory in KB High Byte */
// LOG(LOG_BIOS,LOG_NORMAL)("CMOS:Read from reg %X : %04X",cmos.reg,cmos.regs[cmos.reg]);
return cmos.regs[cmos.reg];
case 0x2F:
extern bool PS1AudioCard;
if( PS1AudioCard )
return 0xFF;
default:
LOG(LOG_BIOS,LOG_NORMAL)("CMOS:Reading from register %X",cmos.reg);
return cmos.regs[cmos.reg];
}
}
void CMOS_SetRegister(Bitu regNr, uint8_t val) {
cmos.regs[regNr] = val;
}
static IO_ReadHandleObject ReadHandler[2];
static IO_WriteHandleObject WriteHandler[2];
void CMOS_Destroy(Section* sec) {
(void)sec;//UNUSED
}
void CMOS_Reset(Section* sec) {
(void)sec;//UNUSED
LOG(LOG_MISC,LOG_DEBUG)("CMOS_Reset(): reinitializing CMOS/RTC controller");
WriteHandler[0].Uninstall();
WriteHandler[1].Uninstall();
ReadHandler[0].Uninstall();
ReadHandler[1].Uninstall();
if (IS_PC98_ARCH)
return;
WriteHandler[0].Install(0x70,cmos_selreg,IO_MB);
WriteHandler[1].Install(0x71,cmos_writereg,IO_MB);
ReadHandler[0].Install(0x71,cmos_readreg,IO_MB);
cmos.timer.enabled=false;
cmos.timer.acknowledged=true;
cmos.reg=0xa;
cmos_writereg(0x71,0x26,1);
cmos.reg=0xb;
cmos_writereg(0x71,0x2,1); //Struct tm *loctime is of 24 hour format,
cmos.regs[0x0c] = 0;
if(date_host_forced) {
cmos.regs[0x0d]=(uint8_t)0x80;
} else {
cmos.reg=0xd;
cmos_writereg(0x71,0x80,1); /* RTC power on */
}
// Equipment is updated from bios.cpp and bios_disk.cpp
/* Fill in base memory size, it is 640K always */
cmos.regs[0x15]=(uint8_t)0x80;
cmos.regs[0x16]=(uint8_t)0x02;
/* Fill in extended memory size */
Bitu exsize=MEM_TotalPages()*4;
if (exsize >= 1024) exsize -= 1024;
else exsize = 0;
if (exsize > 65535) exsize = 65535; /* cap at 64MB. this value is returned as-is by INT 15H AH=0x88 in a 16-bit register */
cmos.regs[0x17]=(uint8_t)exsize;
cmos.regs[0x18]=(uint8_t)(exsize >> 8);
cmos.regs[0x30]=(uint8_t)exsize;
cmos.regs[0x31]=(uint8_t)(exsize >> 8);
if (date_host_forced) {
cmos.time_diff = 0;
cmos.locktime.tv_sec = 0;
}
}
void CMOS_Init() {
LOG(LOG_MISC,LOG_DEBUG)("Initializing CMOS/RTC");
if (control->opt_date_host_forced) {
LOG_MSG("Synchronize date with host: Forced");
date_host_forced=true;
}
AddExitFunction(AddExitFunctionFuncPair(CMOS_Destroy),true);
AddVMEventFunction(VM_EVENT_RESET,AddVMEventFunctionFuncPair(CMOS_Reset));
}
// save state support
void *cmos_timerevent_PIC_Event = (void*)((uintptr_t)cmos_timerevent);
namespace
{
class SerializeCmos : public SerializeGlobalPOD
{
public:
SerializeCmos() : SerializeGlobalPOD("CMOS")
{
registerPOD(cmos.regs);
registerPOD(cmos.nmi);
registerPOD(cmos.reg);
registerPOD(cmos.timer.enabled);
registerPOD(cmos.timer.div);
registerPOD(cmos.timer.delay);
registerPOD(cmos.timer.acknowledged);
registerPOD(cmos.last.timer);
registerPOD(cmos.last.ended);
registerPOD(cmos.last.alarm);
registerPOD(cmos.update_ended);
}
} dummy;
}