Files
dosbox-x/src/hardware/ne2000.cpp
Jookia cb132e02ad ne2000: Decouple emulator from pcap
Currently the ne2000 emulator explicitly depends on pcap.
Decouple the ne2000 code and pcap code so we can always build with the
emulator but optionally disable pcap.

This also updates build defines and configuration to make this
decoupling explicit to the user.
2021-03-05 05:39:03 +11:00

1783 lines
53 KiB
C++

#include "config.h"
#if defined(WIN32)
#define HAVE_REMOTE
#endif
#include "dosbox.h"
#include <string.h>
#include <stdio.h>
#include "support.h"
#include "inout.h"
#include "setup.h"
#include "callback.h"
#include "timer.h"
#include "pic.h"
#include "cpu.h"
#include "setup.h"
#include "control.h"
/* Couldn't find a real spec for the NE2000 out there, hence this is adapted heavily from Bochs */
/////////////////////////////////////////////////////////////////////////
// $Id: ne2k.cc,v 1.56.2.1 2004/02/02 22:37:22 cbothamy Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
// Peter Grehan (grehan@iprg.nokia.com) coded all of this
// NE2000/ether stuff.
#include "ne2000.h"
static void NE2000_TX_Event(Bitu val);
#ifdef C_PCAP
#include "pcap.h"
// Handle to WinPCap device
pcap_t *adhandle = 0;
#ifdef WIN32
// DLL loading
#define pcap_sendpacket(A,B,C) PacketSendPacket(A,B,C)
#define pcap_close(A) PacketClose(A)
#define pcap_freealldevs(A) PacketFreealldevs(A)
#define pcap_open(A,B,C,D,E,F) PacketOpen(A,B,C,D,E,F)
#define pcap_next_ex(A,B,C) PacketNextEx(A,B,C)
#define pcap_findalldevs_ex(A,B,C,D) PacketFindALlDevsEx(A,B,C,D)
int (*PacketSendPacket)(pcap_t *, const u_char *, int) = 0;
void (*PacketClose)(pcap_t *) = 0;
void (*PacketFreealldevs)(pcap_if_t *) = 0;
pcap_t* (*PacketOpen)(char const *,int,int,int,struct pcap_rmtauth *,char *) = 0;
int (*PacketNextEx)(pcap_t *, struct pcap_pkthdr **, const u_char **) = 0;
int (*PacketFindALlDevsEx)(char *, struct pcap_rmtauth *, pcap_if_t **, char *) = 0;
#endif
#endif
//Never completely fill the ne2k ring so that we never
// hit the unclear completely full buffer condition.
#define BX_NE2K_NEVER_FULL_RING (1)
#define LOG_THIS theNE2kDevice->
//#define BX_DEBUG
//#define BX_INFO
#define BX_NULL_TIMER_HANDLE 0
//#define BX_PANIC
//#define BX_ERROR
#define BX_RESET_HARDWARE 0
#define BX_RESET_SOFTWARE 1
static char bxtmp[1024];
static inline void BX_INFO(const char *msg,...) {
va_list va;
va_start(va,msg);
vsnprintf(bxtmp,sizeof(bxtmp)-1,msg,va);
va_end(va);
LOG(LOG_MISC,LOG_NORMAL)("BX_INFO: %s",bxtmp);
}
static inline void BX_DEBUG(const char *msg,...) {
if (false/*TOO MUCH DEBUG INFO*/) {
va_list va;
va_start(va,msg);
vsnprintf(bxtmp,sizeof(bxtmp)-1,msg,va);
va_end(va);
LOG(LOG_MISC,LOG_DEBUG)("BX_DEBUG: %s",bxtmp);
}
}
static inline void BX_ERROR(const char *msg,...) {
va_list va;
va_start(va,msg);
vsnprintf(bxtmp,sizeof(bxtmp)-1,msg,va);
va_end(va);
LOG_MSG("BX_ERROR: %s",bxtmp);
}
static inline void BX_PANIC(const char *msg,...) {
va_list va;
va_start(va,msg);
vsnprintf(bxtmp,sizeof(bxtmp)-1,msg,va);
va_end(va);
LOG_MSG("BX_PANIC: %s",bxtmp);
E_Exit("BX_PANIC condition");
}
bx_ne2k_c* theNE2kDevice = NULL;
bx_ne2k_c::bx_ne2k_c(void)
{
s.tx_timer_index = BX_NULL_TIMER_HANDLE;
}
bx_ne2k_c::~bx_ne2k_c(void)
{
// nothing for now
}
//
// reset - restore state to power-up, cancelling all i/o
//
void
bx_ne2k_c::reset(unsigned type)
{
(void)type;//UNUSED
BX_DEBUG ("reset");
// Zero out registers and memory
memset( & BX_NE2K_THIS s.CR, 0, sizeof(BX_NE2K_THIS s.CR) );
memset( & BX_NE2K_THIS s.ISR, 0, sizeof(BX_NE2K_THIS s.ISR));
memset( & BX_NE2K_THIS s.IMR, 0, sizeof(BX_NE2K_THIS s.IMR));
memset( & BX_NE2K_THIS s.DCR, 0, sizeof(BX_NE2K_THIS s.DCR));
memset( & BX_NE2K_THIS s.TCR, 0, sizeof(BX_NE2K_THIS s.TCR));
memset( & BX_NE2K_THIS s.TSR, 0, sizeof(BX_NE2K_THIS s.TSR));
//memset( & BX_NE2K_THIS s.RCR, 0, sizeof(BX_NE2K_THIS s.RCR));
memset( & BX_NE2K_THIS s.RSR, 0, sizeof(BX_NE2K_THIS s.RSR));
BX_NE2K_THIS s.tx_timer_active = 0;
BX_NE2K_THIS s.local_dma = 0;
BX_NE2K_THIS s.page_start = 0;
BX_NE2K_THIS s.page_stop = 0;
BX_NE2K_THIS s.bound_ptr = 0;
BX_NE2K_THIS s.tx_page_start = 0;
BX_NE2K_THIS s.num_coll = 0;
BX_NE2K_THIS s.tx_bytes = 0;
BX_NE2K_THIS s.fifo = 0;
BX_NE2K_THIS s.remote_dma = 0;
BX_NE2K_THIS s.remote_start = 0;
BX_NE2K_THIS s.remote_bytes = 0;
BX_NE2K_THIS s.tallycnt_0 = 0;
BX_NE2K_THIS s.tallycnt_1 = 0;
BX_NE2K_THIS s.tallycnt_2 = 0;
//memset( & BX_NE2K_THIS s.physaddr, 0, sizeof(BX_NE2K_THIS s.physaddr));
//memset( & BX_NE2K_THIS s.mchash, 0, sizeof(BX_NE2K_THIS s.mchash));
BX_NE2K_THIS s.curr_page = 0;
BX_NE2K_THIS s.rempkt_ptr = 0;
BX_NE2K_THIS s.localpkt_ptr = 0;
BX_NE2K_THIS s.address_cnt = 0;
memset( & BX_NE2K_THIS s.mem, 0, sizeof(BX_NE2K_THIS s.mem));
// Set power-up conditions
BX_NE2K_THIS s.CR.stop = 1;
BX_NE2K_THIS s.CR.rdma_cmd = 4;
BX_NE2K_THIS s.ISR.reset = 1;
BX_NE2K_THIS s.DCR.longaddr = 1;
PIC_DeActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_lower_irq(BX_NE2K_THIS s.base_irq);
}
//
// read_cr/write_cr - utility routines for handling reads/writes to
// the Command Register
//
uint32_t
bx_ne2k_c::read_cr(void)
{
uint32_t val =
(((unsigned int)(BX_NE2K_THIS s.CR.pgsel & 0x03u) << 6u) |
((unsigned int)(BX_NE2K_THIS s.CR.rdma_cmd & 0x07u) << 3u) |
(unsigned int)(BX_NE2K_THIS s.CR.tx_packet << 2u) |
(unsigned int)(BX_NE2K_THIS s.CR.start << 1u) |
(unsigned int)(BX_NE2K_THIS s.CR.stop));
BX_DEBUG("read CR returns 0x%08x", val);
return val;
}
void
bx_ne2k_c::write_cr(uint32_t value)
{
BX_DEBUG ("wrote 0x%02x to CR", value);
// Validate remote-DMA
if ((value & 0x38) == 0x00) {
BX_DEBUG("CR write - invalid rDMA value 0");
value |= 0x20; /* dma_cmd == 4 is a safe default */
//value = 0x22; /* dma_cmd == 4 is a safe default */
}
// Check for s/w reset
if (value & 0x01) {
BX_NE2K_THIS s.ISR.reset = 1;
BX_NE2K_THIS s.CR.stop = 1;
} else {
BX_NE2K_THIS s.CR.stop = 0;
}
BX_NE2K_THIS s.CR.rdma_cmd = (value & 0x38) >> 3;
// If start command issued, the RST bit in the ISR
// must be cleared
if ((value & 0x02) && !BX_NE2K_THIS s.CR.start) {
BX_NE2K_THIS s.ISR.reset = 0;
}
BX_NE2K_THIS s.CR.start = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.CR.pgsel = (value & 0xc0) >> 6;
// Check for send-packet command
if (BX_NE2K_THIS s.CR.rdma_cmd == 3) {
// Set up DMA read from receive ring
BX_NE2K_THIS s.remote_start = BX_NE2K_THIS s.remote_dma =
BX_NE2K_THIS s.bound_ptr * 256;
BX_NE2K_THIS s.remote_bytes = *((uint16_t*) &
BX_NE2K_THIS s.mem[BX_NE2K_THIS s.bound_ptr * 256 + 2 - BX_NE2K_MEMSTART]);
BX_INFO("Sending buffer #x%x length %d",
BX_NE2K_THIS s.remote_start,
BX_NE2K_THIS s.remote_bytes);
}
// Check for start-tx
if ((value & 0x04) && BX_NE2K_THIS s.TCR.loop_cntl) {
// loopback mode
if (BX_NE2K_THIS s.TCR.loop_cntl != 1) {
BX_INFO("Loop mode %d not supported.", BX_NE2K_THIS s.TCR.loop_cntl);
} else {
rx_frame (& BX_NE2K_THIS s.mem[BX_NE2K_THIS s.tx_page_start*256 -
BX_NE2K_MEMSTART],
BX_NE2K_THIS s.tx_bytes);
// do a TX interrupt
// Generate an interrupt if not masked and not one in progress
if (BX_NE2K_THIS s.IMR.tx_inte && !BX_NE2K_THIS s.ISR.pkt_tx) {
//LOG_MSG("tx complete interrupt");
PIC_ActivateIRQ((unsigned int)s.base_irq);
}
BX_NE2K_THIS s.ISR.pkt_tx = 1;
}
} else if (value & 0x04) {
// start-tx and no loopback
if (BX_NE2K_THIS s.CR.stop || !BX_NE2K_THIS s.CR.start)
BX_PANIC(("CR write - tx start, dev in reset"));
if (BX_NE2K_THIS s.tx_bytes == 0)
BX_PANIC(("CR write - tx start, tx bytes == 0"));
#ifdef notdef
// XXX debug stuff
printf("packet tx (%d bytes):\t", BX_NE2K_THIS s.tx_bytes);
for (int i = 0; i < BX_NE2K_THIS s.tx_bytes; i++) {
printf("%02x ", BX_NE2K_THIS s.mem[BX_NE2K_THIS s.tx_page_start*256 -
BX_NE2K_MEMSTART + i]);
if (i && (((i+1) % 16) == 0))
printf("\t");
}
printf("");
#endif
// Send the packet to the system driver
/* TODO: Transmit packet */
//BX_NE2K_THIS ethdev->sendpkt(& BX_NE2K_THIS s.mem[BX_NE2K_THIS s.tx_page_start*256 - BX_NE2K_MEMSTART], BX_NE2K_THIS s.tx_bytes);
#ifdef C_PCAP
pcap_sendpacket(adhandle,&s.mem[s.tx_page_start*256 - BX_NE2K_MEMSTART], s.tx_bytes);
#endif
// some more debug
if (BX_NE2K_THIS s.tx_timer_active) {
BX_PANIC(("CR write, tx timer still active"));
PIC_RemoveEvents(NE2000_TX_Event);
}
//LOG_MSG("send packet command");
//s.tx_timer_index = (64 + 96 + 4*8 + BX_NE2K_THIS s.tx_bytes*8)/10;
s.tx_timer_active = 1;
PIC_AddEvent(NE2000_TX_Event,(float)((64 + 96 + 4*8 + BX_NE2K_THIS s.tx_bytes*8)/10000.0),0);
// Schedule a timer to trigger a tx-complete interrupt
// The number of microseconds is the bit-time / 10.
// The bit-time is the preamble+sfd (64 bits), the
// inter-frame gap (96 bits), the CRC (4 bytes), and the
// the number of bits in the frame (s.tx_bytes * 8).
//
/* TODO: Code transmit timer */
/*
bx_pc_system.activate_timer(BX_NE2K_THIS s.tx_timer_index,
(64 + 96 + 4*8 + BX_NE2K_THIS s.tx_bytes*8)/10,
0); // not continuous
*/
} // end transmit-start branch
// Linux probes for an interrupt by setting up a remote-DMA read
// of 0 bytes with remote-DMA completion interrupts enabled.
// Detect this here
if (BX_NE2K_THIS s.CR.rdma_cmd == 0x01 &&
BX_NE2K_THIS s.CR.start &&
BX_NE2K_THIS s.remote_bytes == 0) {
BX_NE2K_THIS s.ISR.rdma_done = 1;
if (BX_NE2K_THIS s.IMR.rdma_inte) {
PIC_ActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_raise_irq(BX_NE2K_THIS s.base_irq);
}
}
}
//
// chipmem_read/chipmem_write - access the 64K private RAM.
// The ne2000 memory is accessed through the data port of
// the asic (offset 0) after setting up a remote-DMA transfer.
// Both byte and word accesses are allowed.
// The first 16 bytes contains the MAC address at even locations,
// and there is 16K of buffer memory starting at 16K
//
uint32_t bx_ne2k_c::chipmem_read(uint32_t address, unsigned int io_len)
{
uint32_t retval = 0;
if ((io_len == 2) && (address & 0x1))
BX_PANIC(("unaligned chipmem word read"));
// ROM'd MAC address
if (/*(address >=0) && */address <= 31) {
retval = BX_NE2K_THIS s.macaddr[address];
if ((io_len == 2u) || (io_len == 4u)) {
retval |= (unsigned int)(BX_NE2K_THIS s.macaddr[address + 1u] << 8u);
if (io_len == 4u) {
retval |= (unsigned int)(BX_NE2K_THIS s.macaddr[address + 2u] << 16u);
retval |= (unsigned int)(BX_NE2K_THIS s.macaddr[address + 3u] << 24u);
}
}
return (retval);
}
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND)) {
retval = BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART];
if ((io_len == 2u) || (io_len == 4u)) {
retval |= (unsigned int)(BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 1] << 8u);
}
if (io_len == 4u) {
retval |= (unsigned int)(BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 2] << 16u);
retval |= (unsigned int)(BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 3] << 24u);
}
return (retval);
}
BX_DEBUG("out-of-bounds chipmem read, %04X", address);
return (0xff);
}
void
bx_ne2k_c::chipmem_write(uint32_t address, uint32_t value, unsigned io_len)
{
if ((io_len == 2) && (address & 0x1))
BX_PANIC(("unaligned chipmem word write"));
if ((address >= BX_NE2K_MEMSTART) && (address < BX_NE2K_MEMEND)) {
BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART] = value & 0xff;
if (io_len == 2)
BX_NE2K_THIS s.mem[address - BX_NE2K_MEMSTART + 1] = value >> 8;
} else
BX_DEBUG("out-of-bounds chipmem write, %04X", address);
}
//
// asic_read/asic_write - This is the high 16 bytes of i/o space
// (the lower 16 bytes is for the DS8390). Only two locations
// are used: offset 0, which is used for data transfer, and
// offset 0xf, which is used to reset the device.
// The data transfer port is used to as 'external' DMA to the
// DS8390. The chip has to have the DMA registers set up, and
// after that, insw/outsw instructions can be used to move
// the appropriate number of bytes to/from the device.
//
uint32_t
bx_ne2k_c::asic_read(uint32_t offset, unsigned int io_len)
{
uint32_t retval = 0;
switch (offset) {
case 0x0: // Data register
//
// A read remote-DMA command must have been issued,
// and the source-address and length registers must
// have been initialised.
//
if (io_len > BX_NE2K_THIS s.remote_bytes)
{
BX_ERROR("ne2K: dma read underrun iolen=%d remote_bytes=%d",io_len,BX_NE2K_THIS s.remote_bytes);
//return 0;
}
//BX_INFO(("ne2k read DMA: addr=%4x remote_bytes=%d",BX_NE2K_THIS s.remote_dma,BX_NE2K_THIS s.remote_bytes));
retval = chipmem_read(BX_NE2K_THIS s.remote_dma, io_len);
//
// The 8390 bumps the address and decreases the byte count
// by the selected word size after every access, not by
// the amount of data requested by the host (io_len).
//
BX_NE2K_THIS s.remote_dma += (BX_NE2K_THIS s.DCR.wdsize + 1);
if (BX_NE2K_THIS s.remote_dma == BX_NE2K_THIS s.page_stop << 8) {
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.page_start << 8;
}
// keep s.remote_bytes from underflowing
if (BX_NE2K_THIS s.remote_bytes > 1)
BX_NE2K_THIS s.remote_bytes -= (BX_NE2K_THIS s.DCR.wdsize + 1);
else
BX_NE2K_THIS s.remote_bytes = 0;
// If all bytes have been written, signal remote-DMA complete
if (BX_NE2K_THIS s.remote_bytes == 0) {
BX_NE2K_THIS s.ISR.rdma_done = 1;
if (BX_NE2K_THIS s.IMR.rdma_inte) {
PIC_ActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_raise_irq(BX_NE2K_THIS s.base_irq);
}
}
break;
case 0xf: // Reset register
theNE2kDevice->reset(BX_RESET_SOFTWARE);
//retval=0x1;
break;
default:
BX_INFO("asic read invalid address %04x", (unsigned) offset);
break;
}
return (retval);
}
void
bx_ne2k_c::asic_write(uint32_t offset, uint32_t value, unsigned io_len)
{
BX_DEBUG("asic write addr=0x%02x, value=0x%04x", (unsigned) offset, (unsigned) value);
switch (offset) {
case 0x0: // Data register - see asic_read for a description
if ((io_len == 2) && (BX_NE2K_THIS s.DCR.wdsize == 0)) {
BX_PANIC(("dma write length 2 on byte mode operation"));
break;
}
if (BX_NE2K_THIS s.remote_bytes == 0)
BX_PANIC(("ne2K: dma write, byte count 0"));
chipmem_write(BX_NE2K_THIS s.remote_dma, value, io_len);
// is this right ??? asic_read uses DCR.wordsize
BX_NE2K_THIS s.remote_dma += io_len;
if (BX_NE2K_THIS s.remote_dma == BX_NE2K_THIS s.page_stop << 8) {
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.page_start << 8;
}
BX_NE2K_THIS s.remote_bytes -= io_len;
if (BX_NE2K_THIS s.remote_bytes > BX_NE2K_MEMSIZ)
BX_NE2K_THIS s.remote_bytes = 0;
// If all bytes have been written, signal remote-DMA complete
if (BX_NE2K_THIS s.remote_bytes == 0) {
BX_NE2K_THIS s.ISR.rdma_done = 1;
if (BX_NE2K_THIS s.IMR.rdma_inte) {
PIC_ActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_raise_irq(BX_NE2K_THIS s.base_irq);
}
}
break;
case 0xf: // Reset register
theNE2kDevice->reset(BX_RESET_SOFTWARE);
break;
default: // this is invalid, but happens under win95 device detection
BX_INFO("asic write invalid address %04x, ignoring", (unsigned) offset);
break ;
}
}
//
// page0_read/page0_write - These routines handle reads/writes to
// the 'zeroth' page of the DS8390 register file
//
uint32_t
bx_ne2k_c::page0_read(uint32_t offset, unsigned int io_len)
{
BX_DEBUG("page 0 read from port %04x, len=%u", (unsigned) offset,
(unsigned) io_len);
if (io_len > 1) {
BX_ERROR("bad length! page 0 read from port %04x, len=%u", (unsigned) offset,
(unsigned) io_len); /* encountered with win98 hardware probe */
return 0;
}
switch (offset) {
case 0x1: // CLDA0
return (BX_NE2K_THIS s.local_dma & 0xff);
break;
case 0x2: // CLDA1
return (unsigned int)(BX_NE2K_THIS s.local_dma >> 8u);
break;
case 0x3: // BNRY
return (BX_NE2K_THIS s.bound_ptr);
break;
case 0x4: // TSR
return
((unsigned int)(BX_NE2K_THIS s.TSR.ow_coll << 7u) |
(unsigned int)(BX_NE2K_THIS s.TSR.cd_hbeat << 6u) |
(unsigned int)(BX_NE2K_THIS s.TSR.fifo_ur << 5u) |
(unsigned int)(BX_NE2K_THIS s.TSR.no_carrier << 4u) |
(unsigned int)(BX_NE2K_THIS s.TSR.aborted << 3u) |
(unsigned int)(BX_NE2K_THIS s.TSR.collided << 2u) |
(unsigned int)(BX_NE2K_THIS s.TSR.tx_ok));
break;
case 0x5: // NCR
return (BX_NE2K_THIS s.num_coll);
break;
case 0x6: // FIFO
// reading FIFO is only valid in loopback mode
BX_ERROR(("reading FIFO not supported yet"));
return (BX_NE2K_THIS s.fifo);
break;
case 0x7: // ISR
return
((unsigned int)(BX_NE2K_THIS s.ISR.reset << 7u) |
(unsigned int)(BX_NE2K_THIS s.ISR.rdma_done << 6u) |
(unsigned int)(BX_NE2K_THIS s.ISR.cnt_oflow << 5u) |
(unsigned int)(BX_NE2K_THIS s.ISR.overwrite << 4u) |
(unsigned int)(BX_NE2K_THIS s.ISR.tx_err << 3u) |
(unsigned int)(BX_NE2K_THIS s.ISR.rx_err << 2u) |
(unsigned int)(BX_NE2K_THIS s.ISR.pkt_tx << 1u) |
(unsigned int)(BX_NE2K_THIS s.ISR.pkt_rx));
break;
case 0x8: // CRDA0
return (BX_NE2K_THIS s.remote_dma & 0xff);
break;
case 0x9: // CRDA1
return (unsigned int)(BX_NE2K_THIS s.remote_dma >> 8u);
break;
case 0xa: // reserved
BX_INFO(("reserved read - page 0, 0xa"));
return (0xff);
break;
case 0xb: // reserved
BX_INFO(("reserved read - page 0, 0xb"));
return (0xff);
break;
case 0xc: // RSR
return
((unsigned int)(BX_NE2K_THIS s.RSR.deferred << 7u) |
(unsigned int)(BX_NE2K_THIS s.RSR.rx_disabled << 6u) |
(unsigned int)(BX_NE2K_THIS s.RSR.rx_mbit << 5u) |
(unsigned int)(BX_NE2K_THIS s.RSR.rx_missed << 4u) |
(unsigned int)(BX_NE2K_THIS s.RSR.fifo_or << 3u) |
(unsigned int)(BX_NE2K_THIS s.RSR.bad_falign << 2u) |
(unsigned int)(BX_NE2K_THIS s.RSR.bad_crc << 1u) |
(unsigned int)(BX_NE2K_THIS s.RSR.rx_ok));
break;
case 0xd: // CNTR0
return (BX_NE2K_THIS s.tallycnt_0);
break;
case 0xe: // CNTR1
return (BX_NE2K_THIS s.tallycnt_1);
break;
case 0xf: // CNTR2
return (BX_NE2K_THIS s.tallycnt_2);
break;
default:
BX_PANIC("page 0 offset %04x out of range", (unsigned) offset);
}
return(0);
}
void
bx_ne2k_c::page0_write(uint32_t offset, uint32_t value, unsigned io_len)
{
BX_DEBUG("page 0 write to port %04x, len=%u", (unsigned) offset,
(unsigned) io_len);
// It appears to be a common practice to use outw on page0 regs...
// break up outw into two outb's
if (io_len == 2) {
page0_write(offset, (value & 0xff), 1);
page0_write(offset + 1, ((value >> 8) & 0xff), 1);
return;
}
switch (offset) {
case 0x1: // PSTART
BX_NE2K_THIS s.page_start = value;
break;
case 0x2: // PSTOP
// BX_INFO(("Writing to PSTOP: %02x", value));
BX_NE2K_THIS s.page_stop = value;
break;
case 0x3: // BNRY
BX_NE2K_THIS s.bound_ptr = value;
break;
case 0x4: // TPSR
BX_NE2K_THIS s.tx_page_start = value;
break;
case 0x5: // TBCR0
// Clear out low byte and re-insert
BX_NE2K_THIS s.tx_bytes &= 0xff00;
BX_NE2K_THIS s.tx_bytes |= (value & 0xff);
break;
case 0x6: // TBCR1
// Clear out high byte and re-insert
BX_NE2K_THIS s.tx_bytes &= 0x00ff;
BX_NE2K_THIS s.tx_bytes |= ((value & 0xff) << 8);
break;
case 0x7: // ISR
value &= 0x7f; // clear RST bit - status-only bit
// All other values are cleared iff the ISR bit is 1
BX_NE2K_THIS s.ISR.pkt_rx &= ~((bx_bool)((value & 0x01) == 0x01));
BX_NE2K_THIS s.ISR.pkt_tx &= ~((bx_bool)((value & 0x02) == 0x02));
BX_NE2K_THIS s.ISR.rx_err &= ~((bx_bool)((value & 0x04) == 0x04));
BX_NE2K_THIS s.ISR.tx_err &= ~((bx_bool)((value & 0x08) == 0x08));
BX_NE2K_THIS s.ISR.overwrite &= ~((bx_bool)((value & 0x10) == 0x10));
BX_NE2K_THIS s.ISR.cnt_oflow &= ~((bx_bool)((value & 0x20) == 0x20));
BX_NE2K_THIS s.ISR.rdma_done &= ~((bx_bool)((value & 0x40) == 0x40));
value = ((unsigned int)(BX_NE2K_THIS s.ISR.rdma_done << 6u) |
(unsigned int)(BX_NE2K_THIS s.ISR.cnt_oflow << 5u) |
(unsigned int)(BX_NE2K_THIS s.ISR.overwrite << 4u) |
(unsigned int)(BX_NE2K_THIS s.ISR.tx_err << 3u) |
(unsigned int)(BX_NE2K_THIS s.ISR.rx_err << 2u) |
(unsigned int)(BX_NE2K_THIS s.ISR.pkt_tx << 1u) |
(unsigned int)(BX_NE2K_THIS s.ISR.pkt_rx));
value &= ((unsigned int)(BX_NE2K_THIS s.IMR.rdma_inte << 6u) |
(unsigned int)(BX_NE2K_THIS s.IMR.cofl_inte << 5u) |
(unsigned int)(BX_NE2K_THIS s.IMR.overw_inte << 4u) |
(unsigned int)(BX_NE2K_THIS s.IMR.txerr_inte << 3u) |
(unsigned int)(BX_NE2K_THIS s.IMR.rxerr_inte << 2u) |
(unsigned int)(BX_NE2K_THIS s.IMR.tx_inte << 1u) |
(unsigned int)(BX_NE2K_THIS s.IMR.rx_inte));
if (value == 0)
PIC_DeActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_lower_irq(BX_NE2K_THIS s.base_irq);
break;
case 0x8: // RSAR0
// Clear out low byte and re-insert
BX_NE2K_THIS s.remote_start &= 0xff00u;
BX_NE2K_THIS s.remote_start |= (value & 0xffu);
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.remote_start;
break;
case 0x9: // RSAR1
// Clear out high byte and re-insert
BX_NE2K_THIS s.remote_start &= 0x00ffu;
BX_NE2K_THIS s.remote_start |= ((value & 0xffu) << 8u);
BX_NE2K_THIS s.remote_dma = BX_NE2K_THIS s.remote_start;
break;
case 0xa: // RBCR0
// Clear out low byte and re-insert
BX_NE2K_THIS s.remote_bytes &= 0xff00u;
BX_NE2K_THIS s.remote_bytes |= (value & 0xffu);
break;
case 0xb: // RBCR1
// Clear out high byte and re-insert
BX_NE2K_THIS s.remote_bytes &= 0x00ffu;
BX_NE2K_THIS s.remote_bytes |= ((value & 0xffu) << 8u);
break;
case 0xc: // RCR
// Check if the reserved bits are set
if (value & 0xc0)
BX_INFO(("RCR write, reserved bits set"));
// Set all other bit-fields
BX_NE2K_THIS s.RCR.errors_ok = ((value & 0x01u) == 0x01u);
BX_NE2K_THIS s.RCR.runts_ok = ((value & 0x02u) == 0x02u);
BX_NE2K_THIS s.RCR.broadcast = ((value & 0x04u) == 0x04u);
BX_NE2K_THIS s.RCR.multicast = ((value & 0x08u) == 0x08u);
BX_NE2K_THIS s.RCR.promisc = ((value & 0x10u) == 0x10u);
BX_NE2K_THIS s.RCR.monitor = ((value & 0x20u) == 0x20u);
// Monitor bit is a little suspicious...
if (value & 0x20)
BX_INFO(("RCR write, monitor bit set!"));
break;
case 0xd: // TCR
// Check reserved bits
if (value & 0xe0)
BX_ERROR(("TCR write, reserved bits set"));
// Test loop mode (not supported)
if (value & 0x06) {
BX_NE2K_THIS s.TCR.loop_cntl = (value & 0x6) >> 1;
BX_INFO("TCR write, loop mode %d not supported", BX_NE2K_THIS s.TCR.loop_cntl);
} else {
BX_NE2K_THIS s.TCR.loop_cntl = 0;
}
// Inhibit-CRC not supported.
if (value & 0x01)
BX_PANIC(("TCR write, inhibit-CRC not supported"));
// Auto-transmit disable very suspicious
if (value & 0x08)
BX_PANIC(("TCR write, auto transmit disable not supported"));
// Allow collision-offset to be set, although not used
BX_NE2K_THIS s.TCR.coll_prio = ((value & 0x08) == 0x08);
break;
case 0xe: // DCR
// the loopback mode is not suppported yet
if (!(value & 0x08)) {
BX_ERROR(("DCR write, loopback mode selected"));
}
// It is questionable to set longaddr and auto_rx, since they
// aren't supported on the ne2000. Print a warning and continue
if (value & 0x04)
BX_INFO(("DCR write - LAS set ???"));
if (value & 0x10)
BX_INFO(("DCR write - AR set ???"));
// Set other values.
BX_NE2K_THIS s.DCR.wdsize = ((value & 0x01) == 0x01);
BX_NE2K_THIS s.DCR.endian = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.DCR.longaddr = ((value & 0x04) == 0x04); // illegal ?
BX_NE2K_THIS s.DCR.loop = ((value & 0x08) == 0x08);
BX_NE2K_THIS s.DCR.auto_rx = ((value & 0x10) == 0x10); // also illegal ?
BX_NE2K_THIS s.DCR.fifo_size = (value & 0x50) >> 5;
break;
case 0xf: // IMR
// Check for reserved bit
if (value & 0x80)
BX_PANIC(("IMR write, reserved bit set"));
// Set other values
BX_NE2K_THIS s.IMR.rx_inte = ((value & 0x01) == 0x01);
BX_NE2K_THIS s.IMR.tx_inte = ((value & 0x02) == 0x02);
BX_NE2K_THIS s.IMR.rxerr_inte = ((value & 0x04) == 0x04);
BX_NE2K_THIS s.IMR.txerr_inte = ((value & 0x08) == 0x08);
BX_NE2K_THIS s.IMR.overw_inte = ((value & 0x10) == 0x10);
BX_NE2K_THIS s.IMR.cofl_inte = ((value & 0x20) == 0x20);
BX_NE2K_THIS s.IMR.rdma_inte = ((value & 0x40) == 0x40);
if(BX_NE2K_THIS s.ISR.pkt_tx && BX_NE2K_THIS s.IMR.tx_inte) {
LOG_MSG("tx irq retrigger");
PIC_ActivateIRQ((unsigned int)s.base_irq);
}
break;
default:
BX_PANIC("page 0 write, bad offset %0x", offset);
}
}
//
// page1_read/page1_write - These routines handle reads/writes to
// the first page of the DS8390 register file
//
uint32_t
bx_ne2k_c::page1_read(uint32_t offset, unsigned int io_len)
{
BX_DEBUG("page 1 read from port %04x, len=%u", (unsigned) offset,
(unsigned) io_len);
if (io_len > 1)
BX_PANIC("bad length! page 1 read from port %04x, len=%u", (unsigned) offset,
(unsigned) io_len);
switch (offset) {
case 0x1: // PAR0-5
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
return (BX_NE2K_THIS s.physaddr[offset - 1]);
break;
case 0x7: // CURR
BX_DEBUG("returning current page: %02x", (BX_NE2K_THIS s.curr_page));
return (BX_NE2K_THIS s.curr_page);
case 0x8: // MAR0-7
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
return (BX_NE2K_THIS s.mchash[offset - 8]);
break;
default:
BX_PANIC("page 1 r offset %04x out of range", (unsigned) offset);
}
return (0);
}
void
bx_ne2k_c::page1_write(uint32_t offset, uint32_t value, unsigned io_len)
{
(void)io_len;//UNUSED
BX_DEBUG("page 1 w offset %04x", (unsigned) offset);
switch (offset) {
case 0x1: // PAR0-5
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
BX_NE2K_THIS s.physaddr[offset - 1] = value;
break;
case 0x7: // CURR
BX_NE2K_THIS s.curr_page = value;
break;
case 0x8: // MAR0-7
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
BX_NE2K_THIS s.mchash[offset - 8] = value;
break;
default:
BX_PANIC("page 1 w offset %04x out of range", (unsigned) offset);
}
}
//
// page2_read/page2_write - These routines handle reads/writes to
// the second page of the DS8390 register file
//
uint32_t
bx_ne2k_c::page2_read(uint32_t offset, unsigned int io_len)
{
BX_DEBUG("page 2 read from port %04x, len=%u", (unsigned) offset, (unsigned) io_len);
if (io_len > 1)
BX_PANIC("bad length! page 2 read from port %04x, len=%u", (unsigned) offset, (unsigned) io_len);
switch (offset) {
case 0x1: // PSTART
return (BX_NE2K_THIS s.page_start);
break;
case 0x2: // PSTOP
return (BX_NE2K_THIS s.page_stop);
break;
case 0x3: // Remote Next-packet pointer
return (BX_NE2K_THIS s.rempkt_ptr);
break;
case 0x4: // TPSR
return (BX_NE2K_THIS s.tx_page_start);
break;
case 0x5: // Local Next-packet pointer
return (BX_NE2K_THIS s.localpkt_ptr);
break;
case 0x6: // Address counter (upper)
return (unsigned int)(BX_NE2K_THIS s.address_cnt >> 8u);
break;
case 0x7: // Address counter (lower)
return (unsigned int)(BX_NE2K_THIS s.address_cnt & 0xff);
break;
case 0x8: // Reserved
case 0x9:
case 0xa:
case 0xb:
BX_ERROR("reserved read - page 2, 0x%02x", (unsigned) offset);
return (0xff);
break;
case 0xc: // RCR
return
((unsigned int)(BX_NE2K_THIS s.RCR.monitor << 5u) |
(unsigned int)(BX_NE2K_THIS s.RCR.promisc << 4u) |
(unsigned int)(BX_NE2K_THIS s.RCR.multicast << 3u) |
(unsigned int)(BX_NE2K_THIS s.RCR.broadcast << 2u) |
(unsigned int)(BX_NE2K_THIS s.RCR.runts_ok << 1u) |
(unsigned int)(BX_NE2K_THIS s.RCR.errors_ok));
break;
case 0xd: // TCR
return
((unsigned int)(BX_NE2K_THIS s.TCR.coll_prio << 4u) |
(unsigned int)(BX_NE2K_THIS s.TCR.ext_stoptx << 3u) |
((unsigned int)(BX_NE2K_THIS s.TCR.loop_cntl & 0x3u) << 1u) |
(unsigned int)(BX_NE2K_THIS s.TCR.crc_disable));
break;
case 0xe: // DCR
return
(((unsigned int)(BX_NE2K_THIS s.DCR.fifo_size & 0x3) << 5u) |
(unsigned int)(BX_NE2K_THIS s.DCR.auto_rx << 4u) |
(unsigned int)(BX_NE2K_THIS s.DCR.loop << 3u) |
(unsigned int)(BX_NE2K_THIS s.DCR.longaddr << 2u) |
(unsigned int)(BX_NE2K_THIS s.DCR.endian << 1u) |
(unsigned int)(BX_NE2K_THIS s.DCR.wdsize));
break;
case 0xf: // IMR
return
((unsigned int)(BX_NE2K_THIS s.IMR.rdma_inte << 6u) |
(unsigned int)(BX_NE2K_THIS s.IMR.cofl_inte << 5u) |
(unsigned int)(BX_NE2K_THIS s.IMR.overw_inte << 4u) |
(unsigned int)(BX_NE2K_THIS s.IMR.txerr_inte << 3u) |
(unsigned int)(BX_NE2K_THIS s.IMR.rxerr_inte << 2u) |
(unsigned int)(BX_NE2K_THIS s.IMR.tx_inte << 1u) |
(unsigned int) (BX_NE2K_THIS s.IMR.rx_inte));
break;
default:
BX_PANIC("page 2 offset %04x out of range", (unsigned) offset);
}
return (0);
}
void
bx_ne2k_c::page2_write(uint32_t offset, uint32_t value, unsigned io_len)
{
(void)io_len;//UNUSED
// Maybe all writes here should be BX_PANIC()'d, since they
// affect internal operation, but let them through for now
// and print a warning.
if (offset != 0)
BX_ERROR(("page 2 write ?"));
switch (offset) {
case 0x1: // CLDA0
// Clear out low byte and re-insert
BX_NE2K_THIS s.local_dma &= 0xff00;
BX_NE2K_THIS s.local_dma |= (value & 0xff);
break;
case 0x2: // CLDA1
// Clear out high byte and re-insert
BX_NE2K_THIS s.local_dma &= 0x00ff;
BX_NE2K_THIS s.local_dma |= ((value & 0xff) << 8u);
break;
case 0x3: // Remote Next-pkt pointer
BX_NE2K_THIS s.rempkt_ptr = value;
break;
case 0x4:
BX_PANIC(("page 2 write to reserved offset 4"));
break;
case 0x5: // Local Next-packet pointer
BX_NE2K_THIS s.localpkt_ptr = value;
break;
case 0x6: // Address counter (upper)
// Clear out high byte and re-insert
BX_NE2K_THIS s.address_cnt &= 0x00ff;
BX_NE2K_THIS s.address_cnt |= ((value & 0xff) << 8);
break;
case 0x7: // Address counter (lower)
// Clear out low byte and re-insert
BX_NE2K_THIS s.address_cnt &= 0xff00;
BX_NE2K_THIS s.address_cnt |= (value & 0xff);
break;
case 0x8:
case 0x9:
case 0xa:
case 0xb:
case 0xc:
case 0xd:
case 0xe:
case 0xf:
BX_PANIC("page 2 write to reserved offset %0x", offset);
break;
default:
BX_PANIC("page 2 write, illegal offset %0x", offset);
break;
}
}
//
// page3_read/page3_write - writes to this page are illegal
//
uint32_t
bx_ne2k_c::page3_read(uint32_t offset, unsigned int io_len)
{
(void)offset;//UNUSED
(void)io_len;//UNUSED
BX_PANIC(("page 3 read attempted"));
return (0);
}
void
bx_ne2k_c::page3_write(uint32_t offset, uint32_t value, unsigned io_len)
{
(void)value;//UNUSED
(void)offset;//UNUSED
(void)io_len;//UNUSED
BX_PANIC(("page 3 write attempted"));
}
//
// tx_timer_handler/tx_timer
//
void
bx_ne2k_c::tx_timer_handler(void *this_ptr)
{
bx_ne2k_c *class_ptr = (bx_ne2k_c *) this_ptr;
class_ptr->tx_timer();
}
void
bx_ne2k_c::tx_timer(void)
{
BX_DEBUG(("tx_timer"));
BX_NE2K_THIS s.TSR.tx_ok = 1;
// Generate an interrupt if not masked and not one in progress
if (BX_NE2K_THIS s.IMR.tx_inte && !BX_NE2K_THIS s.ISR.pkt_tx) {
//LOG_MSG("tx complete interrupt");
PIC_ActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_raise_irq(BX_NE2K_THIS s.base_irq);
} //else LOG_MSG("no tx complete interrupt");
BX_NE2K_THIS s.ISR.pkt_tx = 1;
BX_NE2K_THIS s.tx_timer_active = 0;
}
//
// read_handler/read - i/o 'catcher' function called from BOCHS
// mainline when the CPU attempts a read in the i/o space registered
// by this ne2000 instance
//
uint32_t bx_ne2k_c::read_handler(void *this_ptr, uint32_t address, unsigned io_len)
{
#if !BX_USE_NE2K_SMF
bx_ne2k_c *class_ptr = (bx_ne2k_c *) this_ptr;
return( class_ptr->read(address, io_len) );
}
uint32_t bx_ne2k_c::read(uint32_t address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_NE2K_SMF
BX_DEBUG("read addr %x, len %d", address, io_len);
uint32_t retval = 0;
unsigned int offset = (unsigned int)address - (unsigned int)(BX_NE2K_THIS s.base_address);
if (offset >= 0x10) {
retval = asic_read(offset - 0x10, io_len);
} else if (offset == 0x00) {
retval = read_cr();
} else {
switch (BX_NE2K_THIS s.CR.pgsel) {
case 0x00:
retval = page0_read(offset, io_len);
break;
case 0x01:
retval = page1_read(offset, io_len);
break;
case 0x02:
retval = page2_read(offset, io_len);
break;
case 0x03:
retval = page3_read(offset, io_len);
break;
default:
BX_PANIC("ne2K: unknown value of pgsel in read - %d",
BX_NE2K_THIS s.CR.pgsel);
}
}
return (retval);
}
//
// write_handler/write - i/o 'catcher' function called from BOCHS
// mainline when the CPU attempts a write in the i/o space registered
// by this ne2000 instance
//
void
bx_ne2k_c::write_handler(void *this_ptr, uint32_t address, uint32_t value,
unsigned io_len)
{
#if !BX_USE_NE2K_SMF
bx_ne2k_c *class_ptr = (bx_ne2k_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void
bx_ne2k_c::write(uint32_t address, uint32_t value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_NE2K_SMF
BX_DEBUG("write with length %d", io_len);
unsigned int offset = (unsigned int)address - (unsigned int)(BX_NE2K_THIS s.base_address);
//
// The high 16 bytes of i/o space are for the ne2000 asic -
// the low 16 bytes are for the DS8390, with the current
// page being selected by the PS0,PS1 registers in the
// command register
//
if (offset >= 0x10) {
asic_write(offset - 0x10, value, io_len);
} else if (offset == 0x00) {
write_cr(value);
} else {
switch (BX_NE2K_THIS s.CR.pgsel) {
case 0x00:
page0_write(offset, value, io_len);
break;
case 0x01:
page1_write(offset, value, io_len);
break;
case 0x02:
page2_write(offset, value, io_len);
break;
case 0x03:
page3_write(offset, value, io_len);
break;
default:
BX_PANIC("ne2K: unknown value of pgsel in write - %d",
BX_NE2K_THIS s.CR.pgsel);
}
}
}
/*
* mcast_index() - return the 6-bit index into the multicast
* table. Stolen unashamedly from FreeBSD's if_ed.c
*/
unsigned
bx_ne2k_c::mcast_index(const void *dst)
{
#define POLYNOMIAL 0x04c11db6
unsigned long crc = 0xffffffffL;
int carry, i, j;
unsigned char b;
unsigned char *ep = (unsigned char *) dst;
for (i = 6; --i >= 0;) {
b = *ep++;
for (j = 8; --j >= 0;) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | (unsigned int)carry);
}
}
return (uint32_t)((crc & 0xfffffffful) >> 26ul); /* WARNING: Caller directly uses our 6-bit return as index. If not truncated, will cause a segfault */
#undef POLYNOMIAL
}
/*
* Callback from the eth system driver when a frame has arrived
*/
/*
void
bx_ne2k_c::rx_handler(void *arg, const void *buf, unsigned len)
{
// BX_DEBUG(("rx_handler with length %d", len));
bx_ne2k_c *class_ptr = (bx_ne2k_c *) arg;
if(
class_ptr->rx_frame(buf, len);
}
*/
/*
* rx_frame() - called by the platform-specific code when an
* ethernet frame has been received. The destination address
* is tested to see if it should be accepted, and if the
* rx ring has enough room, it is copied into it and
* the receive process is updated
*/
void
bx_ne2k_c::rx_frame(const void *buf, unsigned io_len)
{
int pages;
int avail;
unsigned idx;
// int wrapped;
int nextpage;
unsigned char pkthdr[4];
unsigned char *pktbuf = (unsigned char *) buf;
unsigned char *startptr;
static unsigned char bcast_addr[6] = {0xff,0xff,0xff,0xff,0xff,0xff};
if(io_len != 60) {
BX_DEBUG("rx_frame with length %d", io_len);
}
//LOG_MSG("stop=%d, pagestart=%x, dcr_loop=%x, tcr_loopcntl=%x",
// BX_NE2K_THIS s.CR.stop, BX_NE2K_THIS s.page_start,
// BX_NE2K_THIS s.DCR.loop, BX_NE2K_THIS s.TCR.loop_cntl);
if ((BX_NE2K_THIS s.CR.stop != 0) ||
(BX_NE2K_THIS s.page_start == 0) /*||
((BX_NE2K_THIS s.DCR.loop == 0) &&
(BX_NE2K_THIS s.TCR.loop_cntl != 0))*/) {
return;
}
// Add the pkt header + CRC to the length, and work
// out how many 256-byte pages the frame would occupy
pages = (int)((io_len + 4u + 4u + 255u)/256u);
if (BX_NE2K_THIS s.curr_page < BX_NE2K_THIS s.bound_ptr) {
avail = BX_NE2K_THIS s.bound_ptr - BX_NE2K_THIS s.curr_page;
} else {
avail = (BX_NE2K_THIS s.page_stop - BX_NE2K_THIS s.page_start) -
(BX_NE2K_THIS s.curr_page - BX_NE2K_THIS s.bound_ptr);
// wrapped = 1;
}
// Avoid getting into a buffer overflow condition by not attempting
// to do partial receives. The emulation to handle this condition
// seems particularly painful.
if ((avail < pages)
#if BX_NE2K_NEVER_FULL_RING
|| (avail == pages)
#endif
) {
BX_DEBUG("no space");
return;
}
if ((io_len < 40/*60*/) && !BX_NE2K_THIS s.RCR.runts_ok) {
BX_DEBUG("rejected small packet, length %d", io_len);
return;
}
// some computers don't care...
if (io_len < 60) io_len=60;
// Do address filtering if not in promiscuous mode
if (! BX_NE2K_THIS s.RCR.promisc) {
if (!memcmp(buf, bcast_addr, 6)) {
if (!BX_NE2K_THIS s.RCR.broadcast) {
return;
}
} else if (pktbuf[0] & 0x01) {
if (! BX_NE2K_THIS s.RCR.multicast) {
return;
}
idx = mcast_index(buf);
if (!(BX_NE2K_THIS s.mchash[idx >> 3] & (1 << (idx & 0x7)))) {
return;
}
} else if (0 != memcmp(buf, BX_NE2K_THIS s.physaddr, 6)) {
return;
}
} else {
BX_DEBUG(("rx_frame promiscuous receive"));
}
BX_INFO("rx_frame %d to %x:%x:%x:%x:%x:%x from %x:%x:%x:%x:%x:%x",
io_len,
pktbuf[0], pktbuf[1], pktbuf[2], pktbuf[3], pktbuf[4], pktbuf[5],
pktbuf[6], pktbuf[7], pktbuf[8], pktbuf[9], pktbuf[10], pktbuf[11]);
nextpage = BX_NE2K_THIS s.curr_page + pages;
if (nextpage >= BX_NE2K_THIS s.page_stop) {
nextpage -= BX_NE2K_THIS s.page_stop - BX_NE2K_THIS s.page_start;
}
// Setup packet header
pkthdr[0] = 0; // rx status - old behavior
pkthdr[0] = 1; // Probably better to set it all the time
// rather than set it to 0, which is clearly wrong.
if (pktbuf[0] & 0x01) {
pkthdr[0] |= 0x20; // rx status += multicast packet
}
pkthdr[1] = nextpage; // ptr to next packet
pkthdr[2] = (io_len + 4) & 0xff; // length-low
pkthdr[3] = (io_len + 4) >> 8; // length-hi
// copy into buffer, update curpage, and signal interrupt if config'd
startptr = & BX_NE2K_THIS s.mem[BX_NE2K_THIS s.curr_page * 256 -
BX_NE2K_MEMSTART];
if ((nextpage > BX_NE2K_THIS s.curr_page) ||
((BX_NE2K_THIS s.curr_page + pages) == BX_NE2K_THIS s.page_stop)) {
memcpy(startptr, pkthdr, 4);
memcpy(startptr + 4, buf, io_len);
BX_NE2K_THIS s.curr_page = nextpage;
} else {
unsigned int endbytes = (unsigned int)(BX_NE2K_THIS s.page_stop - BX_NE2K_THIS s.curr_page)
* 256u;
memcpy(startptr, pkthdr, 4);
memcpy(startptr + 4, buf, (size_t)(endbytes - 4u));
startptr = & BX_NE2K_THIS s.mem[BX_NE2K_THIS s.page_start * 256u -
BX_NE2K_MEMSTART];
memcpy(startptr, (void *)(pktbuf + endbytes - 4u),
(size_t)(io_len - endbytes + 8u));
BX_NE2K_THIS s.curr_page = nextpage;
}
BX_NE2K_THIS s.RSR.rx_ok = 1;
if (pktbuf[0] & 0x80) {
BX_NE2K_THIS s.RSR.rx_mbit = 1;
}
BX_NE2K_THIS s.ISR.pkt_rx = 1;
if (BX_NE2K_THIS s.IMR.rx_inte) {
//LOG_MSG("packet rx interrupt");
PIC_ActivateIRQ((unsigned int)s.base_irq);
//DEV_pic_raise_irq(BX_NE2K_THIS s.base_irq);
} //else LOG_MSG("no packet rx interrupt");
}
//uint8_t macaddr[6] = { 0xAC, 0xDE, 0x48, 0x8E, 0x89, 0x19 };
Bitu dosbox_read(Bitu port, Bitu len) {
Bitu retval = theNE2kDevice->read((uint32_t)port,(unsigned int)len);
//LOG_MSG("ne2k rd port %x val %4x len %d page %d, CS:IP %8x:%8x",
// port, retval, len, theNE2kDevice->s.CR.pgsel,SegValue(cs),reg_eip);
return retval;
}
void dosbox_write(Bitu port, Bitu val, Bitu len) {
//LOG_MSG("ne2k wr port %x val %4x len %d page %d, CS:IP %8x:%8x",
// port, val, len,theNE2kDevice->s.CR.pgsel,SegValue(cs),reg_eip);
theNE2kDevice->write((uint32_t)port, (uint32_t)val, (unsigned int)len);
}
void bx_ne2k_c::init()
{
//BX_DEBUG(("Init $Id: ne2k.cc,v 1.56.2.1 2004/02/02 22:37:22 cbothamy Exp $"));
// Read in values from config file
//BX_NE2K_THIS s.base_address = 0x300;
//BX_NE2K_THIS s.base_irq = 3;
/*
if (BX_NE2K_THIS s.tx_timer_index == BX_NULL_TIMER_HANDLE) {
BX_NE2K_THIS s.tx_timer_index =
bx_pc_system.register_timer(this, tx_timer_handler, 0,
0,0, "ne2k"); // one-shot, inactive
}*/
// Register the IRQ and i/o port addresses
//DEV_register_irq(BX_NE2K_THIS s.base_irq, "NE2000 ethernet NIC");
//DEV_register_ioread_handler(this, read_handler, addr, "ne2000 NIC", 3);
//DEV_register_iowrite_handler(this, write_handler, addr, "ne2000 NIC", 3);
BX_INFO("port 0x%x/32 irq %d mac %02x:%02x:%02x:%02x:%02x:%02x",
(unsigned int)(BX_NE2K_THIS s.base_address),
(int)(BX_NE2K_THIS s.base_irq),
BX_NE2K_THIS s.physaddr[0],
BX_NE2K_THIS s.physaddr[1],
BX_NE2K_THIS s.physaddr[2],
BX_NE2K_THIS s.physaddr[3],
BX_NE2K_THIS s.physaddr[4],
BX_NE2K_THIS s.physaddr[5]);
// Initialise the mac address area by doubling the physical address
BX_NE2K_THIS s.macaddr[0] = BX_NE2K_THIS s.physaddr[0];
BX_NE2K_THIS s.macaddr[1] = BX_NE2K_THIS s.physaddr[0];
BX_NE2K_THIS s.macaddr[2] = BX_NE2K_THIS s.physaddr[1];
BX_NE2K_THIS s.macaddr[3] = BX_NE2K_THIS s.physaddr[1];
BX_NE2K_THIS s.macaddr[4] = BX_NE2K_THIS s.physaddr[2];
BX_NE2K_THIS s.macaddr[5] = BX_NE2K_THIS s.physaddr[2];
BX_NE2K_THIS s.macaddr[6] = BX_NE2K_THIS s.physaddr[3];
BX_NE2K_THIS s.macaddr[7] = BX_NE2K_THIS s.physaddr[3];
BX_NE2K_THIS s.macaddr[8] = BX_NE2K_THIS s.physaddr[4];
BX_NE2K_THIS s.macaddr[9] = BX_NE2K_THIS s.physaddr[4];
BX_NE2K_THIS s.macaddr[10] = BX_NE2K_THIS s.physaddr[5];
BX_NE2K_THIS s.macaddr[11] = BX_NE2K_THIS s.physaddr[5];
// ne2k signature
for (Bitu i = 12; i < 32; i++)
BX_NE2K_THIS s.macaddr[i] = 0x57;
// Bring the register state into power-up state
reset(BX_RESET_HARDWARE);
}
static void NE2000_TX_Event(Bitu val) {
(void)val;//UNUSED
theNE2kDevice->tx_timer();
}
static void NE2000_Poller(void) {
#ifdef C_PCAP
int res;
struct pcap_pkthdr *header;
u_char *pkt_data;
//#if 0
while((res = pcap_next_ex( adhandle, &header, (const u_char **)&pkt_data)) > 0) {
//LOG_MSG("NE2000: Received %d bytes", header->len);
// don't receive in loopback modes
if((theNE2kDevice->s.DCR.loop == 0) || (theNE2kDevice->s.TCR.loop_cntl != 0))
return;
theNE2kDevice->rx_frame(pkt_data, header->len);
}
//#endif
#endif
}
#ifdef WIN32
#include <windows.h>
#endif
extern std::string niclist;
class NE2K: public Module_base {
private:
// Data
IO_ReadHandleObject ReadHandler8[0x20];
IO_WriteHandleObject WriteHandler8[0x20];
IO_ReadHandleObject ReadHandler16[0x10];
IO_WriteHandleObject WriteHandler16[0x10];
public:
bool load_success;
NE2K(Section* configuration):Module_base(configuration) {
Section_prop * section=static_cast<Section_prop *>(configuration);
load_success = true;
// enabled?
if(!section->Get_bool("ne2000")) {
load_success = false;
return;
}
#ifndef C_PCAP
LOG_MSG("pcap support not enabled, disabling ne2000");
load_success = false;
return;
#endif
#ifdef C_PCAP
#ifdef WIN32
/*
int (*PacketSendPacket)(pcap_t *, const u_char *, int);
void (*PacketClose)(pcap_t *);
void (*PacketFreealldevs)(pcap_if_t *);
pcap_t* (*PacketOpen)(char const *,int,int,int,struct pcap_rmtauth *,char *);
int (*PacketNextEx)(pcap_t *, struct pcap_pkthdr **, const u_char **);
int (*PacketFindALlDevsEx)(char *, struct pcap_rmtauth *, pcap_if_t **, char *);
*/
// init the library
HINSTANCE pcapinst;
pcapinst = LoadLibrary("WPCAP.DLL");
if(pcapinst==NULL) {
niclist = "WinPcap has to be installed for the NE2000 to work.";
LOG_MSG(niclist.c_str());
load_success = false;
return;
}
FARPROC psp;
psp = GetProcAddress(pcapinst,"pcap_sendpacket");
if(!PacketSendPacket) PacketSendPacket =
(int (__cdecl *)(pcap_t *,const u_char *,int))psp;
psp = GetProcAddress(pcapinst,"pcap_close");
if(!PacketClose) PacketClose =
(void (__cdecl *)(pcap_t *)) psp;
psp = GetProcAddress(pcapinst,"pcap_freealldevs");
if(!PacketFreealldevs) PacketFreealldevs =
(void (__cdecl *)(pcap_if_t *)) psp;
psp = GetProcAddress(pcapinst,"pcap_open");
if(!PacketOpen) PacketOpen =
(pcap_t* (__cdecl *)(char const *,int,int,int,struct pcap_rmtauth *,char *)) psp;
psp = GetProcAddress(pcapinst,"pcap_next_ex");
if(!PacketNextEx) PacketNextEx =
(int (__cdecl *)(pcap_t *, struct pcap_pkthdr **, const u_char **)) psp;
psp = GetProcAddress(pcapinst,"pcap_findalldevs_ex");
if(!PacketFindALlDevsEx) PacketFindALlDevsEx =
(int (__cdecl *)(char *, struct pcap_rmtauth *, pcap_if_t **, char *)) psp;
if(PacketFindALlDevsEx==0 || PacketNextEx==0 || PacketOpen==0 ||
PacketFreealldevs==0 || PacketClose==0 || PacketSendPacket==0) {
niclist = "Incorrect or non-functional WinPcap version.";
LOG_MSG(niclist.c_str());
load_success = false;
return;
}
#endif
#endif
// get irq and base
Bitu irq = (Bitu)section->Get_int("nicirq");
if(!(irq==3 || irq==4 || irq==5 || irq==6 ||irq==7 ||
irq==9 || irq==10 || irq==11 || irq==12 ||irq==14 ||irq==15)) {
irq=3;
}
Bitu base = (Bitu)section->Get_hex("nicbase");
if(!(base==0x260||base==0x280||base==0x300||base==0x320||base==0x340||base==0x380)) {
base=0x300;
}
LOG_MSG("NE2000: Base=0x%x irq=%u",(unsigned int)base,(unsigned int)irq);
// mac address
const char* macstring=section->Get_string("macaddr");
unsigned int macint[6];
uint8_t mac[6];
if(sscanf(macstring,"%02x:%02x:%02x:%02x:%02x:%02x",
&macint[0],&macint[1],&macint[2],&macint[3],&macint[4],&macint[5]) != 6) {
mac[0]=0xac;mac[1]=0xde;mac[2]=0x48;
mac[3]=0x88;mac[4]=0xbb;mac[5]=0xaa;
} else {
mac[0]=macint[0]; mac[1]=macint[1];
mac[2]=macint[2]; mac[3]=macint[3];
mac[4]=macint[4]; mac[5]=macint[5];
}
#ifdef C_PCAP
// find out which pcap device to use
const char* realnicstring=section->Get_string("realnic");
pcap_if_t *alldevs;
pcap_if_t *currentdev = NULL;
char errbuf[PCAP_ERRBUF_SIZE];
unsigned int userdev;
#ifdef WIN32
if (pcap_findalldevs_ex(PCAP_SRC_IF_STRING, NULL, &alldevs, errbuf) == -1)
#else
if (pcap_findalldevs(&alldevs, errbuf) == -1)
#endif
{
niclist = "Cannot enumerate network interfaces: "+std::string(errbuf);
LOG_MSG("%s", niclist.c_str());
load_success = false;
return;
}
{
Bitu i = 0;
niclist = "Network Interface List\n-------------------------------------------------------------\n";
for(currentdev=alldevs; currentdev!=NULL; currentdev=currentdev->next) {
const char* desc = "no description";
if(currentdev->description) desc=currentdev->description;
i++;
niclist+=(i<10?"0":"")+std::to_string(i)+" "+currentdev->name+"\n ("+desc+")\n";
}
}
if (!strcasecmp(realnicstring,"list")) {
// print list and quit
std::istringstream in(("\n"+niclist+"\n").c_str());
if (in) for (std::string line; std::getline(in, line); )
LOG_MSG("%s", line.c_str());
pcap_freealldevs(alldevs);
load_success = false;
return;
} else if(1==sscanf(realnicstring,"%u",&userdev)) {
// user passed us a number
Bitu i = 0;
currentdev=alldevs;
while(currentdev!=NULL) {
i++;
if(i==userdev) break;
else currentdev=currentdev->next;
}
} else {
// user might have passed a piece of name
for(currentdev=alldevs; currentdev!=NULL; currentdev=currentdev->next) {
if(strstr(currentdev->name,realnicstring)) {
break;
}else if(currentdev->description!=NULL &&
strstr(currentdev->description,realnicstring)) {
break;
}
}
}
if(currentdev==NULL) {
LOG_MSG("Unable to find network interface - check realnic parameter\n");
load_success = false;
pcap_freealldevs(alldevs);
return;
}
// print out which interface we are going to use
const char* desc = "no description";
if(currentdev->description) desc=currentdev->description;
LOG_MSG("Using Network interface:\n%s\n(%s)\n",currentdev->name,desc);
const char *timeoutstr = section->Get_string("pcaptimeout");
char *end;
int timeout = -1;
if (!strlen(timeoutstr)||timeoutstr[0]!='-'&&!isdigit(timeoutstr[0])) { // Default timeout values
#ifdef WIN32
timeout = -1; // For Windows, use -1 which appears to be specific to WinPCap and means "non-blocking mode"
#else
timeout = 3000; // For other platforms, use 3000ms as the timeout which should work for platforms like macOS
#endif
} else
timeout = strtoul(timeoutstr,&end,10);
// attempt to open it
#ifdef WIN32
if ( (adhandle= pcap_open(
currentdev->name, // name of the device
65536, // portion of the packet to capture
// 65536 = whole packet
PCAP_OPENFLAG_PROMISCUOUS, // promiscuous mode
timeout, // read timeout
NULL, // authentication on the remote machine
errbuf // error buffer
) ) == NULL)
#else
/*pcap_t *pcap_open_live(const char *device, int snaplen,
int promisc, int to_ms, char *errbuf)*/
if ( (adhandle= pcap_open_live(
currentdev->name, // name of the device
65536, // portion of the packet to capture
// 65536 = whole packet
true, // promiscuous mode
timeout, // read timeout
errbuf // error buffer
) ) == NULL)
#endif
{
LOG_MSG("\nUnable to open the interface: %s.", errbuf);
pcap_freealldevs(alldevs);
load_success = false;
return;
}
pcap_freealldevs(alldevs);
#ifndef WIN32
pcap_setnonblock(adhandle,1,errbuf);
#endif
#endif
// create the bochs NIC class
theNE2kDevice = new bx_ne2k_c ();
memcpy(theNE2kDevice->s.physaddr, mac, 6);
theNE2kDevice->s.base_address=(uint32_t)base;
theNE2kDevice->s.base_irq=(int)irq;
theNE2kDevice->init();
// install I/O-handlers and timer
for(Bitu i = 0; i < 0x20; i++) {
ReadHandler8[i].Install((i+theNE2kDevice->s.base_address),
dosbox_read,IO_MB|IO_MW);
WriteHandler8[i].Install((i+theNE2kDevice->s.base_address),
dosbox_write,IO_MB|IO_MW);
}
TIMER_AddTickHandler(NE2000_Poller);
}
~NE2K() {
#ifdef C_PCAP
if(adhandle) pcap_close(adhandle);
adhandle=0;
#endif
if(theNE2kDevice != 0) delete theNE2kDevice;
theNE2kDevice=0;
TIMER_DelTickHandler(NE2000_Poller);
PIC_RemoveEvents(NE2000_TX_Event);
}
};
static NE2K* test = NULL;
void NE2K_ShutDown(Section* sec) {
(void)sec;//UNUSED
if (test) {
delete test;
test = NULL;
}
}
void NE2K_OnReset(Section* sec) {
(void)sec;//UNUSED
if (test == NULL && !IS_PC98_ARCH) {
LOG(LOG_MISC,LOG_DEBUG)("Allocating NE2000 emulation");
test = new NE2K(control->GetSection("ne2000"));
if (!test->load_success) {
LOG(LOG_MISC,LOG_DEBUG)("Sorry, NE2000 allocation failed to load");
delete test;
test = NULL;
}
}
}
void NE2K_Init() {
LOG(LOG_MISC,LOG_DEBUG)("Initializing NE2000 network card emulation");
AddExitFunction(AddExitFunctionFuncPair(NE2K_ShutDown),true);
AddVMEventFunction(VM_EVENT_RESET,AddVMEventFunctionFuncPair(NE2K_OnReset));
}