2024-11-29 14:13:32 -08:00

522 lines
15 KiB
C++

/*
* Copyright (C) 2002-2021 The DOSBox Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef DOSBOX_FPU_H
#define DOSBOX_FPU_H
#include "cpu.h"
#include "logging.h"
#include "mmx.h"
#include <stddef.h>
void FPU_ESC0_Normal(Bitu rm);
void FPU_ESC0_EA(Bitu rm,PhysPt addr);
void FPU_ESC1_Normal(Bitu rm);
void FPU_ESC1_EA(Bitu rm,PhysPt addr, bool op16);
void FPU_ESC2_Normal(Bitu rm);
void FPU_ESC2_EA(Bitu rm,PhysPt addr);
void FPU_ESC3_Normal(Bitu rm);
void FPU_ESC3_EA(Bitu rm,PhysPt addr);
void FPU_ESC4_Normal(Bitu rm);
void FPU_ESC4_EA(Bitu rm,PhysPt addr);
void FPU_ESC5_Normal(Bitu rm);
void FPU_ESC5_EA(Bitu rm,PhysPt addr, bool op16);
void FPU_ESC6_Normal(Bitu rm);
void FPU_ESC6_EA(Bitu rm,PhysPt addr);
void FPU_ESC7_Normal(Bitu rm);
void FPU_ESC7_EA(Bitu rm,PhysPt addr);
#pragma pack(push,1)
typedef union {
// TODO: The configure script needs to use "long double" on x86/x86_64 and verify sizeof(long double) == 10,
// else undef a macro to let the code emulate long double 80-bit IEEE. Also needs to determine host
// byte order here so host long double matches our struct.
struct {
uint64_t mantissa; // [63:0]
unsigned int exponent:15; // [78:64]
unsigned int sign:1; // [79:79]
} f;
#if defined(HAS_LONG_DOUBLE)
long double v; // [79:0]
#endif
struct {
uint64_t l;
uint16_t h;
} raw;
} FPU_Reg_80;
// ^ Remember that in 80-bit extended, the mantissa contains both the fraction and integer bit. There is no
// "implied bit" like 32-bit and 64-bit formats.
#pragma pack(pop)
#define FPU_Reg_80_exponent_bias (16383)
#pragma pack(push,1)
typedef union alignas(8) {
struct {
uint64_t mantissa:52; // [51:0]
uint64_t exponent:11; // [62:52]
uint64_t sign:1; // [63:63]
} f;
double v;
uint64_t raw;
static_assert( sizeof(f) == 8, "FPU_Reg_64 error" );
static_assert( sizeof(v) == 8, "FPU_Reg_64 error" );
static_assert( sizeof(raw) == 8, "FPU_Reg_64 error" );
} FPU_Reg_64;
static_assert( sizeof(FPU_Reg_64) == 8, "FPU_Reg_64 error" );
#pragma pack(pop)
#define FPU_Reg_64_exponent_bias (1023)
static const uint64_t FPU_Reg_64_implied_bit = ((uint64_t)1ULL << (uint64_t)52ULL);
#pragma pack(push,1)
typedef union alignas(4) {
struct {
uint32_t mantissa:23; // [22:0]
uint32_t exponent:8; // [30:23]
uint32_t sign:1; // [31:31]
} f;
float v;
uint32_t raw;
static_assert( sizeof(f) == 4, "FPU_Reg_32 error" );
static_assert( sizeof(v) == 4, "FPU_Reg_32 error" );
static_assert( sizeof(raw) == 4, "FPU_Reg_32 error" );
} FPU_Reg_32;
static_assert( sizeof(FPU_Reg_32) == 4, "FPU_Reg_32 error" );
#pragma pack(pop)
#define FPU_Reg_32_exponent_bias (127)
static const uint32_t FPU_Reg_32_implied_bit = ((uint32_t)1UL << (uint32_t)23UL);
union alignas(8) MMX_reg {
uint64_t q;
#ifndef WORDS_BIGENDIAN
struct {
uint32_t d0,d1;
} ud;
static_assert(sizeof(ud) == 8, "MMX packing error");
struct {
int32_t d0,d1;
} sd;
static_assert(sizeof(sd) == 8, "MMX packing error");
struct uw_t {
uint16_t w0,w1,w2,w3;
} uw;
static_assert(sizeof(uw) == 8, "MMX packing error");
uint8_t uba[8];
uint16_t uwa[4];
uint32_t uda[2];
static_assert(sizeof(uba) == 8, "MMX packing error");
static_assert(sizeof(uwa) == 8, "MMX packing error");
static_assert(sizeof(uda) == 8, "MMX packing error");
static_assert(offsetof(uw_t,w0) == 0, "MMX packing error");
static_assert(offsetof(uw_t,w1) == 2, "MMX packing error");
static_assert(offsetof(uw_t,w2) == 4, "MMX packing error");
static_assert(offsetof(uw_t,w3) == 6, "MMX packing error");
struct {
int16_t w0,w1,w2,w3;
} sw;
static_assert(sizeof(sw) == 8, "MMX packing error");
struct {
uint8_t b0,b1,b2,b3,b4,b5,b6,b7;
} ub;
static_assert(sizeof(ub) == 8, "MMX packing error");
struct {
int8_t b0,b1,b2,b3,b4,b5,b6,b7;
} sb;
static_assert(sizeof(sb) == 8, "MMX packing error");
struct { /* MMX registers can contain single precision float if the program uses AMD 3DNow! instructions */
FPU_Reg_32 f0,f1;
} f32;
static_assert(sizeof(f32) == 8, "MMX packing error");
#else
struct {
uint32_t d1,d0;
} ud;
static_assert(sizeof(ud) == 8, "MMX packing error");
struct {
int32_t d1,d0;
} sd;
static_assert(sizeof(sd) == 8, "MMX packing error");
struct {
uint16_t w3,w2,w1,w0;
} uw;
static_assert(sizeof(uw) == 8, "MMX packing error");
struct {
uint16_t w3,w2,w1,w0;
} sw;
static_assert(sizeof(sw) == 8, "MMX packing error");
struct {
uint8_t b7,b6,b5,b4,b3,b2,b1,b0;
} ub;
static_assert(sizeof(ub) == 8, "MMX packing error");
struct {
uint8_t b7,b6,b5,b4,b3,b2,b1,b0;
} sb;
static_assert(sizeof(sb) == 8, "MMX packing error");
struct { /* MMX registers can contain single precision float if the program uses AMD 3DNow! instructions */
FPU_Reg_32 f1,f0;
} f32;
static_assert(sizeof(f32) == 8, "MMX packing error");
#endif
};
static_assert(sizeof(MMX_reg) == 8, "MMX packing error");
#pragma pack(push,1)
union alignas(16) XMM_Reg {
FPU_Reg_32 f32[4];
FPU_Reg_64 f64[2];
int8_t i8[16];
int16_t i16[8];
int32_t i32[4];
int64_t i64[2];
uint8_t u8[16];
uint16_t u16[8];
uint32_t u32[4];
uint64_t u64[2];
static_assert( sizeof(u8) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(u16) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(u32) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(u64) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(i8) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(i16) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(i32) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(i64) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(f32) == 16 /* 128-bit */, "XMM reg struct error" );
static_assert( sizeof(f64) == 16 /* 128-bit */, "XMM reg struct error" );
};
static_assert( sizeof(XMM_Reg) == 16 /* 128-bit */, "XMM reg struct error" );
#pragma pack(pop)
extern MMX_reg * reg_mmx[8];
extern MMX_reg * lookupRMregMM[256];
int8_t SaturateWordSToByteS(int16_t value);
int16_t SaturateDwordSToWordS(int32_t value);
uint8_t SaturateWordSToByteU(int16_t value);
uint16_t SaturateDwordSToWordU(int32_t value);
void setFPUTagEmpty();
/* Floating point register, in the form the native host uses for "double".
* This is slightly less precise than the 80-bit extended IEEE used by Intel,
* but can be faster using the host processor "double" support. Most DOS games
* using the FPU for 3D rendering are unaffected by the loss of precision.
* However, there are cases where the full 80-bit precision is required such
* as the "Fast Pentium memcpy trick" using the 80-bit versions of FLD/FST to
* copy memory. */
#pragma pack(push,1)
typedef union alignas(8) {
double d;
#ifndef WORDS_BIGENDIAN
struct {
uint32_t lower;
int32_t upper;
} l;
#else
struct {
int32_t upper;
uint32_t lower;
} l;
#endif
int64_t ll;
MMX_reg reg_mmx;
static_assert( sizeof(d) == 8, "FPU_Reg error" );
static_assert( sizeof(l) == 8, "FPU_Reg error" );
static_assert( sizeof(ll) == 8, "FPU_Reg error" );
static_assert( sizeof(reg_mmx) == 8, "FPU_Reg error" );
} FPU_Reg;
static_assert( sizeof(FPU_Reg) == 8, "FPU_Reg error" );
#pragma pack(pop)
// dynamic x86 core needs this
typedef struct {
// 80-bit extended float (m2:m1 = 64-bit mantissa m3 = sign:exponent)
uint32_t m1;
uint32_t m2;
uint16_t m3;
// Padding to make the structure 16 bytes so the inline asm in fpu_instructions_x86.h can shift by 4 to index FPU registers
uint16_t d1;
uint32_t d2;
} FPU_P_Reg;
static_assert( sizeof(FPU_P_Reg) == 16, "FPU_P_Reg error" );
// memory barrier macro. to ensure that reads/stores to one half of the FPU reg struct
// do not overlap with reads/stores from the other half. things can go wrong if the
// compiler writes code to write the mantissa, then load the overall as float, then store
// the exponent. note this is not a hardware level memory barrier, this is a compiler
// level memory barrier against the optimization engine.
#if defined(__GCC__)
# define FPU_Reg_m_barrier() __asm__ __volatile__ ("":::"memory")
#else
# define FPU_Reg_m_barrier()
#endif
enum FPU_Tag {
TAG_Valid = 0,
TAG_Zero = 1,
TAG_Weird = 2,
TAG_Empty = 3
};
template<class T, unsigned bitno, unsigned nbits=1>
struct RegBit
{
enum { basemask = (1 << nbits) - 1 };
enum { mask = basemask << bitno };
T data;
RegBit(const T& reg) : data(reg) {}
template <class T2> RegBit& operator=(T2 val)
{
data = (data & ~mask) | ((nbits > 1 ? val & basemask : !!val) << bitno);
return *this;
}
operator unsigned() const { return (data & mask) >> bitno; }
};
struct FPUControlWord
{
union
{
uint16_t reg = initValue;
RegBit<decltype(reg), 0> IM; // Invalid operation mask
RegBit<decltype(reg), 1> DM; // Denormalized operand mask
RegBit<decltype(reg), 2> ZM; // Zero divide mask
RegBit<decltype(reg), 3> OM; // Overflow mask
RegBit<decltype(reg), 4> UM; // Underflow mask
RegBit<decltype(reg), 5> PM; // Precision mask
RegBit<decltype(reg), 7> M; // Interrupt mask (8087-only)
RegBit<decltype(reg), 8, 2> PC; // Precision control
RegBit<decltype(reg), 10, 2> RC; // Rounding control
RegBit<decltype(reg), 12> IC; // Infinity control (8087/80287-only)
};
enum
{
mask8087 = 0x1fff,
maskNon8087 = 0x1f7f,
reservedMask = 0x40,
initValue = 0x37f
};
enum RoundMode
{
Nearest = 0,
Down = 1,
Up = 2,
Chop = 3
};
FPUControlWord() {}
FPUControlWord(const FPUControlWord& other) = default;
FPUControlWord& operator=(const FPUControlWord& other)
{
reg = other.reg;
return *this;
}
template<class T>
FPUControlWord& operator=(T val)
{
reg = (val & (FPU_ArchitectureType<=FPU_ARCHTYPE_8087 ? mask8087 : maskNon8087)) | reservedMask;
return *this;
}
operator unsigned() const
{
return reg;
}
template <class T>
FPUControlWord& operator |=(T val)
{
*this = reg | val;
return *this;
}
void init() { reg = initValue; }
FPUControlWord allMasked() const
{
auto masked = *this;
masked |= IM.mask | DM.mask | ZM.mask | OM.mask | UM.mask | PM.mask;
return masked;
}
};
struct FPUStatusWord
{
union
{
uint16_t reg = 0;
RegBit<decltype(reg), 0> IE; // Invalid operation
RegBit<decltype(reg), 1> DE; // Denormalized operand
RegBit<decltype(reg), 2> ZE; // Divide-by-zero
RegBit<decltype(reg), 3> OE; // Overflow
RegBit<decltype(reg), 4> UE; // Underflow
RegBit<decltype(reg), 5> PE; // Precision
RegBit<decltype(reg), 6> SF; // Stack Flag (non-8087/802087)
RegBit<decltype(reg), 7> IR; // Interrupt request (8087-only)
RegBit<decltype(reg), 7> ES; // Error summary (non-8087)
RegBit<decltype(reg), 8> C0; // Condition flag
RegBit<decltype(reg), 9> C1; // Condition flag
RegBit<decltype(reg), 10> C2; // Condition flag
RegBit<decltype(reg), 11, 3> top; // Top of stack pointer
RegBit<decltype(reg), 14> C3; // Condition flag
RegBit<decltype(reg), 15> B; // Busy flag
};
FPUStatusWord() {}
FPUStatusWord(const FPUStatusWord& other) = default;
FPUStatusWord& operator=(const FPUStatusWord& other)
{
reg = other.reg;
return *this;
}
template<class T>
FPUStatusWord& operator=(T val)
{
reg = val;
return *this;
}
operator unsigned() const
{
return reg;
}
template <class T>
FPUStatusWord& operator |=(T val)
{
*this |= reg | val;
return *this;
}
void init() { reg = 0; }
void clearExceptions()
{
IE = false; DE = false; ZE = false; OE = false; UE = false; PE = false;
ES = false;
}
enum
{
conditionMask = 0x4700,
conditionAndExceptionMask = 0x47bf
};
std::string to_string() const;
};
typedef struct {
#if defined(HAS_LONG_DOUBLE)//probably shouldn't allow struct to change size based on this
FPU_Reg _do_not_use__regs[9];
#else
FPU_Reg regs[9];
#endif
FPU_P_Reg p_regs[9];
FPU_Reg_80 regs_80[9];
#if defined(HAS_LONG_DOUBLE)//probably shouldn't allow struct to change size based on this
bool _do_not_use__use80[9]; // if set, use the 80-bit precision version
#else
bool use80[9]; // if set, use the 80-bit precision version
#endif
FPU_Tag tags[9];
FPUControlWord cw;
FPUStatusWord sw;
XMM_Reg xmmreg[8]; // SSE emulation
uint32_t mxcsr; // SSE control register
} FPU_rec;
// Replace with std::numbers when c++20 is available
#define PI 3.141592653589793238462L
#define L2E 1.4426950408889634073605L
#define L2T 3.3219280948873623478693L
#define LN2 0.69314718055994530941683L
#define LG2 0.30102999566398119521379L
extern FPU_rec fpu;
// TOP = macro for use in C/C++ for top of FPU stack
// FPUSW = macro for the entire FPU status word for use in dynamic core
// NTS: DOSBox-X until 2023/03/11 and all other forks have dynamic core code that generates memory loads
// from (&TOP). That code is flawed because while you think you are loading the top of the stack,
// what you are actually doing is taking the address of a bitfield (which doesn't do what you think
// it does!) and generating code to read that address. Code that you think is using the FPU top of
// stack is in reality using the entire FPU status word as top of stack!
//
// This issue has since been resolved by adding a right shift instruction after the load. To make
// what is actually happening clearer for development going forward, all dynamic core code has been
// changed to use &FPUSW instead of &TOP.
//
// FPUSW is a macro that resolves to the "reg" union field which is a plain 16-bit unsigned integer
// containing all FPU status word bits.
#define TOP fpu.sw.top
#define FPUSW fpu.sw.reg
#define STV(i) ( (fpu.sw.top + (i) ) & 7 )
uint16_t FPU_GetTag(void);
void FPU_FLDCW(PhysPt addr);
static INLINE void FPU_SetTag(uint16_t tag){
for(Bitu i=0;i<8;i++)
fpu.tags[i] = static_cast<FPU_Tag>((tag >>(2*i))&3);
}
static INLINE void FPU_SET_C0(Bitu C){
fpu.sw.C0 = !!C;
}
static INLINE void FPU_SET_C1(Bitu C){
fpu.sw.C1 = !!C;
}
static INLINE void FPU_SET_C2(Bitu C){
fpu.sw.C2 = !!C;
}
static INLINE void FPU_SET_C3(Bitu C){
fpu.sw.C3 = !!C;
}
static INLINE void FPU_SET_D(Bitu C){
fpu.sw.DE = !!C;
}
static INLINE void FPU_LOG_WARN(Bitu tree, bool ea, Bitu group, Bitu sub) {
LOG(LOG_FPU,LOG_WARN)("ESC %lu%s:Unhandled group %lu subfunction %lu",(long unsigned int)tree,ea?" EA":"",(long unsigned int)group,(long unsigned int)sub);
}
#endif