import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts default_params = { # op related "op": "LESS", "input_idx": None, "input2_idx": None, "output_idx": None, # tensor related "input_size": None, "output_size": None, "input_dtype": "float32", "input2_dtype": "float32", "output_dtype": "float32", # quantization related "weight_value": None, "bias": None, "input_zero_point": None, "output_zero_point": None, "input_scale": None, "output_scale": None, "multiplier": None, "shift": None, } class greater(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input(self.params["input_idx"], self.params["input_dtype"], self.params["input_size"], 1, 1) self._add_input(self.params["input2_idx"], self.params["input2_dtype"], self.params["input_size"], 1, 1) self._add_output(self.params["output_idx"], self.params["output_dtype"], self.params["input_size"], 1, 1) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params input_1_str = self._getBufferstrCast( params["input_buf_add"], params["input_buf_add_offset"], dtype=self.input_tensors[0].dtype ) input_2_str = self._getBufferstrCast( params["input2_buf_add"], params["input2_buf_add_offset"], dtype=self.input_tensors[1].dtype ) output_str = self._getBufferstrCast( params["output_buf_add"], params["output_buf_add_offset"], dtype=self.output_tensors[0].dtype ) if params["input_dtype"] == "float32": string = f"greater({str(params['input_size'])}," + f"{input_1_str},{input_2_str},{output_str});\n" else: raise NotImplementedError return string