# ---------------------------------------------------------------------- # Project: TinyEngine # Title: maxpool2d.py # # Reference papers: # - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020 # - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021 # - MCUNetV3: On-Device Training Under 256KB Memory, NeurIPS 2022 # Contact authors: # - Wei-Ming Chen, wmchen@mit.edu # - Wei-Chen Wang, wweichen@mit.edu # - Ji Lin, jilin@mit.edu # - Ligeng Zhu, ligeng@mit.edu # - Song Han, songhan@mit.edu # # Target ISA: ARMv7E-M # ---------------------------------------------------------------------- import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["maxPool2d"] default_params = { # op related "op": "MAX_POOL_2D", "is_SEBlock": False, "filter_h": None, "filter_w": None, "stride_h": None, "stride_w": None, "pad_h": None, "pad_w": None, "input_idx": None, "output_idx": None, # tensor related "input_dim": None, "input_h": None, "input_w": None, "input_c": None, "output_dim": None, "output_h": None, "output_w": None, "output_c": None, "input_dtype": "int8", "output_dtype": "int8", # quantization related "input_zero_point": None, "output_zero_point": None, "input_scale": None, "output_scale": None, } class maxPool2d(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["input_c"], self.params["input_w"], self.params["input_h"], ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["output_c"], self.params["output_w"], self.params["output_h"], ) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params string = f"max_pooling({self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])}," string += ( f"{str(params['input_h'])},{str(params['input_w'])},{str(params['input_c'])},{str(params['stride_h'])}," ) string += f"{str(params['stride_w'])},{str(params['output_h'])},{str(params['output_w'])},-128,127," string += f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])});\n" return string