import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["negative"] default_params = { # op related "op": "NEGATIVE", "input_idx": None, "output_idx": None, # tensor related "input_size": None, "output_size": None, "input_dtype": "float32", "output_dtype": "float32", # quantization related "weight_value": None, "bias": None, "input_zero_point": None, "output_zero_point": None, "input_scale": None, "output_scale": None, "multiplier": None, "shift": None, } class negative(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input(self.params["input_idx"], self.params["input_dtype"], self.params["input_size"], 1, 1) self._add_output(self.params["output_idx"], self.params["output_dtype"], self.params["input_size"], 1, 1) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params size = params["input_size"] string = f"fptr = (float*){self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])};" string += f"fptr2 = (float*){self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])};" string += f"for(int i = 0; i < {size}; i++) fptr2[i] = fptr[i] * -1.0f;\n" return string