import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["permute_4D_3012"] default_params = { # op related "op": "permute_4D_3012", "input_idx": None, "output_idx": None, # tensor related "input_dim": None, "d1": None, "d2": None, "d3": None, "d4": None, "input_dtype": "float32", "output_dtype": "float32", } class permute_4D_3012(basicOperator): static_cnt = 0 def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["d1"], self.params["d2"], self.params["d3"] * self.params["d4"], ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["d1"], self.params["d2"], self.params["d3"] * self.params["d4"], ) permute_4D_3012.static_cnt += 1 if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params if params["input_dtype"] == "float32": string = ( f"permute4D_dim3012({self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}," ) string += f"{params['d1']},{params['d3']},{params['d4']},{params['d2']}," # OIHW -> OHWI string += f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n" else: raise NotImplementedError return string