import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts default_params = { # op related "op": "PERMUTE_GROUPCONV_OUT", "input_idx": None, "output_idx": None, # tensor related "input_dim": None, "input_h": None, "input_w": None, "input_c": None, "groups": None, "input_dtype": "float32", "output_dtype": "float32", } class permute_groupconv_out(basicOperator): static_cnt = 0 def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["input_h"], self.params["input_w"], self.params["input_c"], ) self._add_output( f"permute_groupconv_out{permute_groupconv_out.static_cnt}", self.params["output_dtype"], self.params["input_c"], self.params["input_h"], self.params["input_w"], ) permute_groupconv_out.static_cnt += 1 if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params if params["input_dtype"] == "float32": string = ( "permute_groupconv_out(" + f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}," + f"{params['input_h']},{params['input_w']},{params['input_c']}," + f"{int(params['input_c']/params['groups'])},{params['groups']}," + f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n" ) else: raise NotImplementedError return string