import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts default_params = { # op related "op": "RESHAPE", "input_idx": None, "output_idx": None, # tensor related "input_h": None, "input_w": None, "input_c": None, "output_dim": None, "output_h": None, "output_w": None, "output_c": None, "input_dtype": "float32", "output_dtype": "float32", } class reshape(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["input_c"], self.params["input_w"], self.params["input_h"], ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["output_c"], self.params["output_w"], self.params["output_h"], ) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params if params["input_dtype"] == "float32": if params["output_w"] == params["output_h"] == 1: string = ( f"reshape_3dto1d({self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}," ) string += f"{params['input_h']},{params['input_w']},{params['input_c']}," string += f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n" else: raise NotImplementedError else: raise NotImplementedError return string