import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["sum"] default_params = { # op related "op": "SUM", "input_idx": None, "axis": None, "output_idx": None, # tensor related "input_dim": None, "output_dim": None, "d1": None, "d2": None, "d3": None, "d4": None, "od1": None, "od2": None, "od3": None, "od4": None, "output_size": None, "input_dtype": "float32", "output_dtype": "float32", "exclude": False, } class sum(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["d2"] * self.params["d1"], self.params["d3"], self.params["d4"], ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["od2"] * self.params["od1"], self.params["od3"], self.params["od4"], ) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def get_macs(self): p = self.params return p["d1"] * p["d2"] * p["d3"] * p["d4"] def generate_inference_str(self): params = self.params # OIHW -> OHWI parameter conversion if params["input_dtype"] == "float32": if params["d1"] == 1 and not params["exclude"]: # use 3D fallback mapping = {"0": None, "1": 2, "2": 0, "3": 1} string = f"sum_3D({self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}," string += ( f"{self.params['d3']},{self.params['d4']},{self.params['d2']},{mapping[str(self.params['axis'])]}," ) string += f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n" elif params["exclude"]: mapping = {"0": 0, "1": 3, "2": 1, "3": 2} string = ( f"sum_4D_exclude({self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}," ) string += ( f"{self.params['d1']},{self.params['d3']},{self.params['d4']},{self.params['d2']}," + f"{mapping[str(self.params['axis'])]}," + f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n" ) else: # For int8 gradients if params["exclude"]: mapping = {"0": 0, "1": 3, "2": 1, "3": 2} string = ( "sum_4D_exclude_int8(" + f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'], 'int8')}," + f"{self.params['d1']},{self.params['d3']},{self.params['d4']},{self.params['d2']}," + f"{mapping[str(self.params['axis'])]}," + f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'], 'int32')}" + ");\n" ) else: raise NotImplementedError return string