import warnings from ..constant import USE_BIT_MASK from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["where"] default_params = { # op related "op": "WHERE", "input_idx": None, "input2_idx": None, "input3_idx": None, "output_idx": None, # tensor related "input_dim": None, "input_size": None, "output_dim": None, "output_size": None, "input_dtype": "float32", "input2_dtype": "float32", "input3_dtype": "float32", "output_dtype": "float32", # quantization related "weight_value": None, "bias": None, "input_zero_point": None, "output_zero_point": None, "input_scale": None, "output_scale": None, "multiplier": None, "shift": None, # fusion with zeros "input3_is_zeros": False, # inplace update "inplace": False, } class where(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input(self.params["input_idx"], self.params["input_dtype"], self.params["input_size"], 1, 1) self._add_input(self.params["input2_idx"], self.params["input2_dtype"], self.params["input_size"], 1, 1) self._add_input(self.params["input3_idx"], self.params["input3_dtype"], self.params["input_size"], 1, 1) self._add_output(self.params["output_idx"], self.params["output_dtype"], self.params["output_size"], 1, 1) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params # function_name input_str = self._getBufferstrCast( params["input_buf_add"], params["input_buf_add_offset"], dtype=self.input_tensors[0].dtype ) input2_str = self._getBufferstrCast( params["input2_buf_add"], params["input2_buf_add_offset"], dtype=self.input_tensors[1].dtype ) if params["input3_is_zeros"]: if params["output_dtype"] == "int8": function_name = "where_zeros_int8" elif params["output_dtype"] == "int32": function_name = "where_zeros_int32" elif params["output_dtype"] == "float32": function_name = "where_zeros" if params["inplace"]: function_name = f"{function_name}_inplace_bit" if USE_BIT_MASK else "function_name_inplace" string = f"{function_name}({input_str},{params['input_size']},{input2_str});\n" else: if USE_BIT_MASK: raise NotImplementedError output_str = self._getBufferstrCast( params["output_buf_add"], params["output_buf_add_offset"], dtype=self.output_tensors[0].dtype ) string = f"{function_name}({input_str},{params['input_size']},{input2_str},{output_str});\n" else: if params["output_dtype"] != "float32": raise NotImplementedError function_name = "where" output_str = self._getBufferstrCast( params["output_buf_add"], params["output_buf_add_offset"], dtype=self.output_tensors[0].dtype ) input3_str = self._getBufferstrCast( params["input3_buf_add"], params["input3_buf_add_offset"], dtype=self.input_tensors[2].dtype ) string = f"{function_name}({input_str},{params['input_size']}," string += f"{input2_str},{input3_str},{output_str});\n" return string