import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts default_params = { # op related "op": "MAT_MUL", "input_idx": None, "input2_idx": None, "output_idx": None, # tensor related "matA_row": None, "matA_col": None, "matB_row": None, "matB_col": None, "weight_value": None, "weight_name": None, "input_dtype": "int8", "input2_dtype": "int8", "output_dtype": "int8", } class mat_mul(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["matA_row"], self.params["matA_col"], 1 ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["matA_row"], self.params["matB_col"], 1 ) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def generate_inference_str(self): params = self.params if params["input_dtype"] == "float32": string = f"mat_mul({self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}," string += f"{str(params['matA_row'])},{str(params['matA_col'])}," string += f"weight_fp{params['parsed_trainable']},{str(params['matB_col'])}," string += f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n" else: raise NotImplementedError return string