# ---------------------------------------------------------------------- # Project: TinyEngine # Title: add.py # # Reference papers: # - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020 # - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021 # - MCUNetV3: On-Device Training Under 256KB Memory, arXiv:2206.15472 # Contact authors: # - Wei-Ming Chen, wmchen@mit.edu # - Wei-Chen Wang, wweichen@mit.edu # - Ji Lin, jilin@mit.edu # - Ligeng Zhu, ligeng@mit.edu # - Song Han, songhan@mit.edu # # Target ISA: ARMv7E-M # ---------------------------------------------------------------------- import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["Add"] default_params = { # op related "op": "ADD", "input_idx": None, "input2_idx": None, "output_idx": None, # tensor related "input_dim": None, "input_h": None, "input_w": None, "input_c": None, "input2_dim": None, "input2_h": None, "input2_w": None, "input2_c": None, "output_dim": None, "output_h": None, "output_w": None, "output_c": None, "input_dtype": "int8", "input2_dtype": "int8", "output_dtype": "int8", # quantization related "input_zero_point": None, "input2_zero_point": None, "output_zero_point": None, "input_scale": None, "input2_scale": None, "output_scale": None, "input_multiplier": None, "input2_multiplier": None, "output_multiplier": None, "input_effective_scale": None, "input2_effective_scale": None, "output_effective_scale": None, "input_shift": None, "input2_shift": None, "output_shift": None, "left_shift": None, } class Add(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["input_c"], self.params["input_w"], self.params["input_h"], ) self._add_input( self.params["input2_idx"], self.params["input2_dtype"], self.params["input2_c"], self.params["input2_w"], self.params["input2_h"], ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["output_c"], self.params["output_w"], self.params["output_h"], ) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def get_macs(self) -> int: p = self.params return p["output_h"] * p["output_w"] * p["output_c"] def generate_inference_str(self): string = "" params = self.params string += f"add_fpreq({str(int(params['input_h']*params['input_w']*params['input_c']))}, " string += f"{self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])}," string += f"{str(params['input_scale'])},{str(params['input_zero_point'])}," string += f"{self._getBufferstr(params['input2_buf_add'], params['input2_buf_add_offset'])}," string += f"{str(params['input2_scale'])},{str(params['input2_zero_point'])}," string += f"{str(params['output_scale'])},{str(params['output_zero_point'])}," string += f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])});\n" return string