# ---------------------------------------------------------------------- # Project: TinyEngine # Title: conv2d.py # # Reference papers: # - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020 # - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021 # - MCUNetV3: On-Device Training Under 256KB Memory, arXiv:2206.15472 # Contact authors: # - Wei-Ming Chen, wmchen@mit.edu # - Wei-Chen Wang, wweichen@mit.edu # - Ji Lin, jilin@mit.edu # - Ligeng Zhu, ligeng@mit.edu # - Song Han, songhan@mit.edu # # Target ISA: ARMv7E-M # ---------------------------------------------------------------------- import warnings from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts __all__ = ["Conv2d"] default_params = { # op related "op": "CONV_2D", "stride_h": None, "stride_w": None, "input_idx": None, "output_idx": None, # tensor related "input_dim": None, "input_h": None, "input_w": None, "input_c": None, "output_dim": None, "output_h": None, "output_w": None, "output_c": None, "kernel_h": None, "kernel_w": None, "input_dtype": "int8", "output_dtype": "int8", "padding": None, # quantization related "weight_value": None, "weight_name": None, "bias": None, "bias_name": None, "effective_scale": None, "input_zero_point": None, "output_zero_point": None, "input_scale": None, "output_scale": None, "weight_scale": None, "multiplier": None, "shift": None, } class Conv2d(basicOperator): def __init__(self, params: dict) -> None: self.params = deep_copy_dicts(default_params) overwrite_dicts(self.params, params) super().__init__() # handle input/output tensors in HWC format self._add_input( self.params["input_idx"], self.params["input_dtype"], self.params["input_c"], self.params["input_w"], self.params["input_h"], ) self._add_output( self.params["output_idx"], self.params["output_dtype"], self.params["output_c"], self.params["output_w"], self.params["output_h"], ) if None in default_params: warnings.warn(f"parameters are not all set for op {self.params['op']}") def _op_hparam_info(self) -> str: string = f" k{self.params['kernel_h']}x{self.params['kernel_w']}_r{self.params['input_h']}" string += f"x{self.params['input_w']}x{self.params['input_c']}_{self.params['output_h']}" string += f"x{self.params['output_w']}x{self.params['output_c']}" return string def set_input_zero_point(self, zero_x): p = self.params p["input_zero_point"] = zero_x def set_output_zero_point(self, zero_y): p = self.params p["input_zero_point"] = zero_y def get_macs(self): p = self.params return p["output_h"] * p["output_w"] * p["kernel_h"] * p["kernel_w"] * p["input_c"] * p["output_c"] def get_weights_size(self) -> int: p = self.params if p["input_dtype"] in {"float32", "fp32"}: size = 4 else: size = 1 return p["kernel_h"] * p["kernel_w"] * p["input_c"] * p["output_c"] * size def get_bias_size(self) -> int: p = self.params return 4 * p["output_c"] def get_scale_size(self) -> int: p = self.params return 4 * p["output_c"] def get_sbuf_size(self) -> int: params = self.params if params["input_dtype"] == params["output_dtype"] == "int8": p = self.params return p["kernel_h"] * p["kernel_w"] * p["input_c"] * 2 * 2 # 2 col and 16 bit else: return 0 def get_kbuf_size(self) -> int: p = self.params if p["kernel_h"] == 1: return 0 else: return self.get_weights_size() * 2 # 16bit def generate_inference_str( self, unsigned_input: bool = False, FP_output: bool = False, use_aggressive_unroll: bool = False, use_hard_switsh: bool = False, fp_requantize: bool = False, tflite_op: bool = False, dummy_address: bool = False, ): string = "" params = self.params # floating point implmenetation kernel_h = params["kernel_h"] # function name if params["kernel_h"] == 1: # find the proper function if params["output_c"] % 2 != 0: if ( FP_output and "effective_scale" in params and params["output_scale"] is not None and params["effective_scale"] is not None ): function_name = "convolve_1x1_s8_oddch_fp" else: function_name = "convolve_1x1_s8_oddch" else: if use_aggressive_unroll and params["input_c"] in [8, 16, 24, 48]: function_name = f"convolve_1x1_s8_ch{str(params['input_c'])}" else: if ( FP_output and "effective_scale" in params and params["output_scale"] is not None and params["effective_scale"] is not None ): function_name = "convolve_1x1_s8_fp" else: function_name = "convolve_1x1_s8" elif kernel_h == 3 and params["stride_h"] == 2 and params["padding"] == 1: if unsigned_input: function_name = "convolve_u8_kernel3_inputch3_stride2_pad1" else: if "is_patch" in params and params["is_patch"]: function_name = "patchpadding_convolve_s8_kernel3_inputch3_stride2" else: function_name = "convolve_s8_kernel3_inputch3_stride2_pad1" elif kernel_h == 3 and params["stride_h"] == 1 and params["padding"] == 1: function_name = "convolve_s8_kernel3_stride1_pad1" else: raise NotImplementedError if fp_requantize: function_name += "_fpreq" # input tensor, shape, weight, bias if unsigned_input: string += f"{function_name}((const q8_t *)" string += f"{self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])}," else: string += f"{function_name}({self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])}," string += f"{str(params['input_w'])},{str(params['input_h'])},{str(params['input_c'])}," parsed_idx = str(params["parsed_trainable"]) string += f"(const q7_t*) weight{parsed_idx},bias{parsed_idx}," # scales or multiplier and shift if ( fp_requantize or FP_output and "effective_scale" in params and params["output_scale"] is not None and params["effective_scale"] is not None ): string += f"scales{parsed_idx}," else: string += f"shift{parsed_idx},multiplier{parsed_idx}," # output: zero point, min, max, output tensor, shape string += f"{str(params['output_zero_point'])},{str(params['input_zero_point'] * -1)},-128,127," string += f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])}," string += f"{str(params['output_w'])},{str(params['output_h'])},{str(params['output_c'])}," # intemediate buffers string += "sbuf" if ( kernel_h == 3 and params["stride_h"] == 2 and params["padding"] == 1 and not ("is_patch" in params and params["is_patch"]) ): string += ",kbuf" # pad value for kernel size > 1 if kernel_h > 1: string += f",{str(params['input_zero_point'])}" # patch-based parameters if "is_patch" in params and params["is_patch"] and (params["kernel_h"] > 1 or params["kernel_w"] > 1): string += ", pad_t, pad_b, pad_l, pad_r);\n" stride_string = str(params["stride_h"]) string += f"pad_t /= {stride_string};pad_b /= {stride_string};pad_l /= {stride_string};" string += f"pad_r /= {stride_string};\n" else: string += ");\n" if use_hard_switsh: string = ( "input_shape.Resize(4); ptr = input_shape.DimsData();\n" + f"ptr[0] = 1;ptr[1] = {str(params['output_h'])};ptr[2] = {str(params['output_w'])};" + f"ptr[3] = {str(params['output_c'])};\n" ) string += ( "output_shape.Resize(4); ptr = output_shape.DimsData();\n" + f"ptr[0] = 1;ptr[1] = {str(params['output_h'])};ptr[2] = {str(params['output_w'])};" + f"ptr[3] = {str(params['output_c'])};\n" ) string += ( "tflite::reference_ops::HardSwish(hs_op_params, input_shape, " + f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])}," + f" output_shape, {self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])});\n" ) return string