mirror of
https://github.com/mit-han-lab/tinyengine.git
synced 2025-05-09 17:11:01 +08:00
73 lines
2.3 KiB
Python
73 lines
2.3 KiB
Python
# ----------------------------------------------------------------------
|
|
# Project: TinyEngine
|
|
# Title: CodegenUtilTFlite.py
|
|
#
|
|
# Reference papers:
|
|
# - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020
|
|
# - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021
|
|
# - MCUNetV3: On-Device Training Under 256KB Memory, NeurIPS 2022
|
|
# Contact authors:
|
|
# - Wei-Ming Chen, wmchen@mit.edu
|
|
# - Wei-Chen Wang, wweichen@mit.edu
|
|
# - Ji Lin, jilin@mit.edu
|
|
# - Ligeng Zhu, ligeng@mit.edu
|
|
# - Song Han, songhan@mit.edu
|
|
#
|
|
# Target ISA: ARMv7E-M
|
|
# ----------------------------------------------------------------------
|
|
|
|
import os
|
|
from tempfile import TemporaryDirectory
|
|
|
|
from .CodeGenerator import CodeGenerator
|
|
from .GeneralMemoryScheduler import GeneralMemoryScheduler
|
|
from .TfliteConvertor import TfliteConvertor
|
|
|
|
|
|
def GenerateSourceFilesFromTFlite(
|
|
tflite_path,
|
|
life_cycle_path=None,
|
|
):
|
|
use_inplace = True
|
|
|
|
with TemporaryDirectory() as WORKING_DIR:
|
|
if life_cycle_path is None:
|
|
schedule_image_path = os.path.join(WORKING_DIR, "schedule.png")
|
|
else:
|
|
schedule_image_path = life_cycle_path
|
|
|
|
tf_convertor = TfliteConvertor(tflite_path)
|
|
tf_convertor.parseOperatorInfo()
|
|
layer = tf_convertor.layer
|
|
outTable = []
|
|
VisaulizeTrainable = False # disable for code gen
|
|
memory_scheduler = GeneralMemoryScheduler(
|
|
layer,
|
|
False,
|
|
False,
|
|
outputTables=outTable,
|
|
inplace=use_inplace,
|
|
mem_visual_path=schedule_image_path,
|
|
VisaulizeTrainable=VisaulizeTrainable,
|
|
)
|
|
memory_scheduler.USE_INPLACE = use_inplace
|
|
memory_scheduler.allocateMemory()
|
|
|
|
outTable = tf_convertor.outputTables if hasattr(tf_convertor, "outputTables") else []
|
|
code_generator = CodeGenerator(
|
|
memsche=memory_scheduler,
|
|
inplace=memory_scheduler.USE_INPLACE,
|
|
unsigned_input=False,
|
|
patch_params=None,
|
|
FP_output=False,
|
|
profile_mode=False,
|
|
fp_requantize=True,
|
|
tflite_op=False,
|
|
dummy_address=False,
|
|
outputTables=outTable,
|
|
)
|
|
# set detection outputs before codegen if any
|
|
code_generator.codeGeneration()
|
|
|
|
return memory_scheduler.buffers["input_output"]
|