tinyengine/code_generator/CodegenUtilTFlite.py
2022-12-12 18:06:22 -05:00

73 lines
2.3 KiB
Python

# ----------------------------------------------------------------------
# Project: TinyEngine
# Title: CodegenUtilTFlite.py
#
# Reference papers:
# - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020
# - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021
# - MCUNetV3: On-Device Training Under 256KB Memory, NeurIPS 2022
# Contact authors:
# - Wei-Ming Chen, wmchen@mit.edu
# - Wei-Chen Wang, wweichen@mit.edu
# - Ji Lin, jilin@mit.edu
# - Ligeng Zhu, ligeng@mit.edu
# - Song Han, songhan@mit.edu
#
# Target ISA: ARMv7E-M
# ----------------------------------------------------------------------
import os
from tempfile import TemporaryDirectory
from .CodeGenerator import CodeGenerator
from .GeneralMemoryScheduler import GeneralMemoryScheduler
from .TfliteConvertor import TfliteConvertor
def GenerateSourceFilesFromTFlite(
tflite_path,
life_cycle_path=None,
):
use_inplace = True
with TemporaryDirectory() as WORKING_DIR:
if life_cycle_path is None:
schedule_image_path = os.path.join(WORKING_DIR, "schedule.png")
else:
schedule_image_path = life_cycle_path
tf_convertor = TfliteConvertor(tflite_path)
tf_convertor.parseOperatorInfo()
layer = tf_convertor.layer
outTable = []
VisaulizeTrainable = False # disable for code gen
memory_scheduler = GeneralMemoryScheduler(
layer,
False,
False,
outputTables=outTable,
inplace=use_inplace,
mem_visual_path=schedule_image_path,
VisaulizeTrainable=VisaulizeTrainable,
)
memory_scheduler.USE_INPLACE = use_inplace
memory_scheduler.allocateMemory()
outTable = tf_convertor.outputTables if hasattr(tf_convertor, "outputTables") else []
code_generator = CodeGenerator(
memsche=memory_scheduler,
inplace=memory_scheduler.USE_INPLACE,
unsigned_input=False,
patch_params=None,
FP_output=False,
profile_mode=False,
fp_requantize=True,
tflite_op=False,
dummy_address=False,
outputTables=outTable,
)
# set detection outputs before codegen if any
code_generator.codeGeneration()
return memory_scheduler.buffers["input_output"]