2022-11-20 16:52:33 -05:00

162 lines
7.2 KiB
Python

import warnings
from .basic_utils import basicOperator, deep_copy_dicts, islabelstr, isParamstr, overwrite_dicts
__all__ = ["mul"]
default_params = {
# op related
"op": "MUL",
"input_idx": None,
"input2_idx": None,
"output_idx": None,
# tensor related
"input_size": None,
"input2_size": None,
"output_size": None,
"input_dtype": "float32",
"input2_dtype": "float32",
"output_dtype": "float32",
# quantization related
"weight_value": None,
"bias": None,
"input_zero_point": None,
"output_zero_point": None,
"input_scale": None,
"output_scale": None,
"multiplier": None,
"shift": None,
# input of scale from some conv2d
"scale_conv_2d_op": None,
"scale_from_add": None,
"constant": None,
# inplace
"inplace": False,
}
class mul(basicOperator):
def __init__(self, params: dict) -> None:
self.params = deep_copy_dicts(default_params)
overwrite_dicts(self.params, params)
super().__init__()
# handle input/output tensors in HWC format
self._add_input(self.params["input_idx"], self.params["input_dtype"], self.params["input_size"], 1, 1)
if not (isParamstr(self.params["input2_idx"]) or islabelstr(self.params["input2_idx"])):
self._add_input(self.params["input2_idx"], self.params["input2_dtype"], self.params["output_size"], 1, 1)
self._add_output(self.params["output_idx"], self.params["output_dtype"], self.params["output_size"], 1, 1)
if None in default_params:
warnings.warn(f"parameters are not all set for op {self.params['op']}")
def get_macs(self):
p = self.params
return p["input_size"]
def generate_inference_str(self):
params = self.params
if params["input_dtype"] == "float32":
if self.params["input_size"] != self.params["input2_size"]:
if not islabelstr(self.params["input_idx"]):
input0_ptr = f"{self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])}"
else:
input0_ptr = "labels"
if isParamstr(self.params["input2_idx"]):
if "add" not in self.params["input2_idx"] and "scale" in self.params["input2_idx"]:
input2_ptr = f"scales{self.params['scale_conv_2d_op'].params['parsed_trainable']}"
else:
input2_ptr = None # we don't
elif not islabelstr(self.params["input2_idx"]):
input2_ptr = f"{self._getBufferstr(params['input2_buf_add'], params['input2_buf_add_offset'])}"
else:
input2_ptr = "labels"
if self.params["input_size"] > self.params["input2_size"]:
input_array_ptr = input0_ptr
scaler = input2_ptr
input_size = self.params["input_size"]
scaler_size = self.params["input2_size"]
else:
input_array_ptr = input2_ptr
scaler = input0_ptr
input_size = self.params["input2_size"]
scaler_size = self.params["input_size"]
if scaler_size > 1:
# we need loop over HW dimensions
HW_cout = int(input_size / scaler_size)
assert HW_cout > 1
if self.params["inplace"]:
string = (
f"fptr = {input_array_ptr};\n"
+ f"fptr2 = {scaler};\n"
+ f"for(int hw = 0; hw < {HW_cout}; hw++)"
+ "{\n"
+ (
f"for(int i = 0; i < {scaler_size}; i++)"
+ "{float f = *fptr; *fptr++ = fptr2[i] * f;};\n"
)
+ "}\n"
)
else:
string = (
f"fptr = {input_array_ptr};\n"
+ "fptr3 = (float*)"
+ f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])};"
+ f"fptr2 = {scaler};\n"
+ f"for(int hw = 0; hw < {HW_cout}; hw++)"
+ "{\n"
+ f"for(int i = 0; i < {scaler_size}; i++) *fptr3++ = fptr2[i] * *fptr++;\n"
+ "}\n"
)
else:
string = f"fptr = (float*){input_array_ptr};"
string += (
"fptr3 = (float*)"
+ f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])};"
)
# if it is from parameter
if self.params["scale_from_add"] is not None:
string += (
f"for(int i = 0; i < {self.params['output_size']}; i++) fptr3[i] = "
+ f"{self.params['scale_from_add']} * fptr[i];\n"
)
elif isinstance(self.params["constant"], float):
string += (
f"for(int i = 0; i < {self.params['output_size']}; i++) fptr3[i] = "
+ f"{self.params['constant']} * fptr[i];\n"
)
else:
string += f"fptr2 = {scaler};"
string += (
f"for(int i = 0; i < {self.params['output_size']}; i++) fptr3[i] = *fptr2 * fptr[i];\n"
)
else:
if isParamstr(self.params["input2_idx"]):
assert self.params["scale_conv_2d_op"] is not None
string = (
f"mul({self.params['output_size']},"
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"scales{self.params['scale_conv_2d_op'].params['parsed_trainable']},"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
)
elif islabelstr(self.params["input2_idx"]):
string = (
f"mul({self.params['output_size']},"
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ "labels,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
)
else:
string = (
f"mul({self.params['output_size']},"
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{self._getBufferstrCast(params['input2_buf_add'], params['input2_buf_add_offset'])},"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
)
else:
raise NotImplementedError
return string