mirror of
https://github.com/mit-han-lab/tinyengine.git
synced 2025-05-10 09:28:47 +08:00
162 lines
7.2 KiB
Python
162 lines
7.2 KiB
Python
import warnings
|
|
|
|
from .basic_utils import basicOperator, deep_copy_dicts, islabelstr, isParamstr, overwrite_dicts
|
|
|
|
__all__ = ["mul"]
|
|
|
|
default_params = {
|
|
# op related
|
|
"op": "MUL",
|
|
"input_idx": None,
|
|
"input2_idx": None,
|
|
"output_idx": None,
|
|
# tensor related
|
|
"input_size": None,
|
|
"input2_size": None,
|
|
"output_size": None,
|
|
"input_dtype": "float32",
|
|
"input2_dtype": "float32",
|
|
"output_dtype": "float32",
|
|
# quantization related
|
|
"weight_value": None,
|
|
"bias": None,
|
|
"input_zero_point": None,
|
|
"output_zero_point": None,
|
|
"input_scale": None,
|
|
"output_scale": None,
|
|
"multiplier": None,
|
|
"shift": None,
|
|
# input of scale from some conv2d
|
|
"scale_conv_2d_op": None,
|
|
"scale_from_add": None,
|
|
"constant": None,
|
|
# inplace
|
|
"inplace": False,
|
|
}
|
|
|
|
|
|
class mul(basicOperator):
|
|
def __init__(self, params: dict) -> None:
|
|
self.params = deep_copy_dicts(default_params)
|
|
overwrite_dicts(self.params, params)
|
|
super().__init__()
|
|
# handle input/output tensors in HWC format
|
|
self._add_input(self.params["input_idx"], self.params["input_dtype"], self.params["input_size"], 1, 1)
|
|
if not (isParamstr(self.params["input2_idx"]) or islabelstr(self.params["input2_idx"])):
|
|
self._add_input(self.params["input2_idx"], self.params["input2_dtype"], self.params["output_size"], 1, 1)
|
|
self._add_output(self.params["output_idx"], self.params["output_dtype"], self.params["output_size"], 1, 1)
|
|
|
|
if None in default_params:
|
|
warnings.warn(f"parameters are not all set for op {self.params['op']}")
|
|
|
|
def get_macs(self):
|
|
p = self.params
|
|
return p["input_size"]
|
|
|
|
def generate_inference_str(self):
|
|
params = self.params
|
|
|
|
if params["input_dtype"] == "float32":
|
|
if self.params["input_size"] != self.params["input2_size"]:
|
|
if not islabelstr(self.params["input_idx"]):
|
|
input0_ptr = f"{self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])}"
|
|
else:
|
|
input0_ptr = "labels"
|
|
if isParamstr(self.params["input2_idx"]):
|
|
if "add" not in self.params["input2_idx"] and "scale" in self.params["input2_idx"]:
|
|
input2_ptr = f"scales{self.params['scale_conv_2d_op'].params['parsed_trainable']}"
|
|
else:
|
|
input2_ptr = None # we don't
|
|
elif not islabelstr(self.params["input2_idx"]):
|
|
input2_ptr = f"{self._getBufferstr(params['input2_buf_add'], params['input2_buf_add_offset'])}"
|
|
else:
|
|
input2_ptr = "labels"
|
|
|
|
if self.params["input_size"] > self.params["input2_size"]:
|
|
input_array_ptr = input0_ptr
|
|
scaler = input2_ptr
|
|
input_size = self.params["input_size"]
|
|
scaler_size = self.params["input2_size"]
|
|
else:
|
|
input_array_ptr = input2_ptr
|
|
scaler = input0_ptr
|
|
input_size = self.params["input2_size"]
|
|
scaler_size = self.params["input_size"]
|
|
|
|
if scaler_size > 1:
|
|
# we need loop over HW dimensions
|
|
HW_cout = int(input_size / scaler_size)
|
|
assert HW_cout > 1
|
|
if self.params["inplace"]:
|
|
string = (
|
|
f"fptr = {input_array_ptr};\n"
|
|
+ f"fptr2 = {scaler};\n"
|
|
+ f"for(int hw = 0; hw < {HW_cout}; hw++)"
|
|
+ "{\n"
|
|
+ (
|
|
f"for(int i = 0; i < {scaler_size}; i++)"
|
|
+ "{float f = *fptr; *fptr++ = fptr2[i] * f;};\n"
|
|
)
|
|
+ "}\n"
|
|
)
|
|
else:
|
|
string = (
|
|
f"fptr = {input_array_ptr};\n"
|
|
+ "fptr3 = (float*)"
|
|
+ f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])};"
|
|
+ f"fptr2 = {scaler};\n"
|
|
+ f"for(int hw = 0; hw < {HW_cout}; hw++)"
|
|
+ "{\n"
|
|
+ f"for(int i = 0; i < {scaler_size}; i++) *fptr3++ = fptr2[i] * *fptr++;\n"
|
|
+ "}\n"
|
|
)
|
|
else:
|
|
string = f"fptr = (float*){input_array_ptr};"
|
|
string += (
|
|
"fptr3 = (float*)"
|
|
+ f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])};"
|
|
)
|
|
# if it is from parameter
|
|
if self.params["scale_from_add"] is not None:
|
|
string += (
|
|
f"for(int i = 0; i < {self.params['output_size']}; i++) fptr3[i] = "
|
|
+ f"{self.params['scale_from_add']} * fptr[i];\n"
|
|
)
|
|
elif isinstance(self.params["constant"], float):
|
|
string += (
|
|
f"for(int i = 0; i < {self.params['output_size']}; i++) fptr3[i] = "
|
|
+ f"{self.params['constant']} * fptr[i];\n"
|
|
)
|
|
else:
|
|
string += f"fptr2 = {scaler};"
|
|
string += (
|
|
f"for(int i = 0; i < {self.params['output_size']}; i++) fptr3[i] = *fptr2 * fptr[i];\n"
|
|
)
|
|
else:
|
|
if isParamstr(self.params["input2_idx"]):
|
|
assert self.params["scale_conv_2d_op"] is not None
|
|
string = (
|
|
f"mul({self.params['output_size']},"
|
|
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
|
|
+ f"scales{self.params['scale_conv_2d_op'].params['parsed_trainable']},"
|
|
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
|
|
)
|
|
elif islabelstr(self.params["input2_idx"]):
|
|
string = (
|
|
f"mul({self.params['output_size']},"
|
|
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
|
|
+ "labels,"
|
|
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
|
|
)
|
|
else:
|
|
string = (
|
|
f"mul({self.params['output_size']},"
|
|
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
|
|
+ f"{self._getBufferstrCast(params['input2_buf_add'], params['input2_buf_add_offset'])},"
|
|
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return string
|