2022-11-20 16:52:33 -05:00

63 lines
1.9 KiB
Python

import warnings
from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts
default_params = {
# op related
"op": "RESHAPE_LIKE",
"input_idx": None,
"output_idx": None,
# tensor related
"input_h": None,
"input_w": None,
"input_c": None,
"input2_h": None,
"input2_w": None,
"input2_c": None,
"output_dim": None,
"output_h": None,
"output_w": None,
"output_c": None,
"input_dtype": "float32",
"output_dtype": "float32",
}
class reshape_like(basicOperator):
def __init__(self, params: dict) -> None:
self.params = deep_copy_dicts(default_params)
overwrite_dicts(self.params, params)
super().__init__()
# handle input/output tensors in HWC format
self._add_input(
self.params["input_idx"],
self.params["input_dtype"],
self.params["input_c"],
self.params["input_w"],
self.params["input_h"],
)
self._add_output(
self.params["output_idx"],
self.params["output_dtype"],
self.params["output_c"],
self.params["output_w"],
self.params["output_h"],
)
if None in default_params:
warnings.warn(f"parameters are not all set for op {self.params['op']}")
def generate_inference_str(self):
params = self.params
if params["input_dtype"] == "float32":
if params["input_w"] == params["input_h"] == 1:
string = (
"reshape_like_1dto4d("
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input2_h']},{params['input2_w']},{params['input2_c']},"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])});\n"
)
else:
raise NotImplementedError
return string