tinyengine/code_generator/operators/transpose_conv2d.py
2022-11-29 06:05:40 +00:00

463 lines
21 KiB
Python

import warnings
from .basic_utils import basicOperator, deep_copy_dicts, isweightstr, overwrite_dicts
__all__ = ["transposeConv2d"]
# USE_FP_REQ = True
default_params = {
# op related
"op": "TRANSPOSE_CONV_2D",
"is_SEBlock": False,
"stride_h": None,
"stride_w": None,
"input_idx": None,
"output_idx": None,
# tensor related
"input_dim": None,
"input_h": None,
"input_w": None,
"input_c": None,
"output_dim": None,
"output_h": None,
"output_w": None,
"output_c": None,
"kernel_h": None,
"kernel_w": None,
"input_dtype": "float32",
"input2_dtype": "float32",
"output_dtype": "int8",
"norm_buffer": None,
"float_to_int8": False,
# quantization related
"weight_value": None,
"weight_name": None,
"bias": None,
"effective_scale": None,
"input_zero_point": 0,
"output_zero_point": 0,
"input_scale": None,
"output_scale": None,
"weight_scale": None,
"multiplier": None,
"shift": None,
# for fp implementation
"float_max": "FLT_MAX",
"float_min": "-FLT_MAX",
"padding": None,
"padding_h": None,
"padding_w": None,
"dilation_h": None,
"dilation_w": None,
"kernel_layout": "OIHW",
"group": None,
# for partial channel
"first_k_channel": None,
}
class transposeConv2d(basicOperator):
conv_params_declared = False
def __init__(self, params: dict, USE_INPLACE: bool = True) -> None:
self.params = deep_copy_dicts(default_params)
self.USE_INPLACE = USE_INPLACE
overwrite_dicts(self.params, params)
super().__init__()
# handle input/output tensors in HWC format
self._add_input(
self.params["input_idx"],
self.params["input_dtype"],
self.params["input_c"],
self.params["input_w"],
self.params["input_h"],
)
self._add_output(
self.params["output_idx"],
self.params["output_dtype"],
self.params["output_c"],
self.params["output_w"],
self.params["output_h"],
)
if None in default_params:
warnings.warn(f"parameters are not all set for op {self.params['op']}")
def _op_hparam_info(self) -> str:
return (
f" k{self.params['kernel_h']}x{self.params['kernel_w']}_r{self.params['input_h']}x"
f"{self.params['input_w']}x{self.params['input_c']}_{self.params['output_h']}x"
f"{self.params['output_w']}x{self.params['output_c']}"
)
def set_input_zero_point(self, zero_x):
p = self.params
p["input_zero_point"] = zero_x
def set_output_zero_point(self, zero_y):
p = self.params
p["input_zero_point"] = zero_y
def get_macs(self):
p = self.params
if p["group"] == p["input_c"] and p["group"] == p["output_c"]:
return (
p["input_h"] * p["input_w"] * p["kernel_h"] * p["kernel_w"] * p["input_c"] * p["output_c"] / p["group"]
)
else:
return p["input_h"] * p["input_w"] * p["kernel_h"] * p["kernel_w"] * p["input_c"] * p["output_c"]
def get_weights_size(self) -> int:
p = self.params
if p["input_dtype"] == "float32" or "fp32":
size = 4
else:
size = 1
if p["group"] == p["input_c"] and p["group"] == p["output_c"]:
return p["kernel_h"] * p["kernel_w"] * p["input_c"] * size
elif p["group"] == 1:
return p["kernel_h"] * p["kernel_w"] * p["input_c"] * p["output_c"] * size
else:
raise NotImplementedError
def get_bias_size(self) -> int:
p = self.params
return 4 * p["output_c"]
def get_scale_size(self) -> int:
p = self.params
return 4 * p["output_c"]
def get_sbuf_size(self) -> int:
p = self.params
if p["group"] == p["input_c"] and p["group"] == p["output_c"]:
return (p["output_h"] + p["kernel_h"] - 1) * (p["output_w"] + p["kernel_w"] - 1) * 4 # floating point
else:
return 0
def get_kbuf_size(self) -> int:
return 0 # 16bit
def add_int32_buffer_tensor(self):
params = self.params
if params["group"] == params["input_c"] and params["group"] == params["output_c"]: # depthwise
self._add_input(
params["output_idx"] + "_buffer", "int32", params["output_c"], params["output_w"], params["output_h"]
)
else:
self._add_input(params["output_idx"] + "_buffer", "int32", params["output_c"], 4, 4)
params["norm_buffer"] = len(self.input_tensors) - 1
def generate_inference_str(
self,
tflite_op: bool = False,
dummy_address: bool = False,
):
string = ""
params = self.params
# require int32 output buffer
norm_buffer_add = None
if params["norm_buffer"]:
norm_tensor = self.input_tensors[params["norm_buffer"]]
norm_buffer_add = f"&{norm_tensor.buffer_name}[{norm_tensor.buffer_address}]"
if params["group"] == 1 and tflite_op:
string += f"conv_params.stride_height = {params['stride_h']};\n"
string += f"conv_params.stride_width = {params['stride_w']};\n"
string += "conv_params.dilation_width_factor = 0;\n"
string += "conv_params.dilation_height_factor = 0;\n"
string += f"conv_params.input_offset = {params['input_zero_point']};\n"
string += f"conv_params.output_offset = {params['output_zero_point']};\n"
string += f"conv_params.padding_values.width = {params['padding_w']};\n"
string += f"conv_params.padding_values.height = {params['padding_h']};\n"
string += "conv_params.quantized_activation_min = -128;\n"
string += "conv_params.quantized_activation_max = 127;\n"
string += f"conv_params.float_activation_min = {params['float_min']};\n"
string += f"conv_params.float_activation_max = {params['float_max']};\n"
if isinstance(params["weight_name"], str) and isweightstr(params["weight_name"]):
weight_string = params["weight_name"]
else:
weight_string = f"weight_fp{params['parsed_trainable']}"
if params["kernel_layout"] == "OIHW":
function_name = "TFLite_TransposeConv"
elif params["kernel_layout"] == "IOHW":
function_name = "TFLite_TransposeConv_IOHW"
if dummy_address:
input_address_string = "&buffer0[0]"
output_address_string = "&buffer0[0]"
else:
input_address_string = (
f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])}"
)
output_address_string = (
f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])}"
)
if params["input2_dtype"] == "int8" and params["input_dtype"] in ["float32", "int8"]:
if params["first_k_channel"] is None:
string += (
f"{function_name}_int8weight(conv_params,{input_address_string},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"(q7_t*){weight_string},{params['kernel_h']},{params['kernel_w']},NULL,"
+ f"{output_address_string},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ "(float*)sbuf,1);\n"
)
else:
if params["first_k_channel"] % 8 == 0:
string += (
f"{function_name}_int8weight_partialCH_8innercol(conv_params,{input_address_string},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"(q7_t*){weight_string},(q7_t*){weight_string}Flash,{params['first_k_channel']},"
+ f"{params['kernel_h']},{params['kernel_w']},NULL,"
+ f"{output_address_string},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ "(float*)sbuf,1);\n"
)
elif params["first_k_channel"] % 4 == 0:
string += (
f"{function_name}_int8weight_partialCH_4innercol(conv_params,{input_address_string},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"(q7_t*){weight_string},(q7_t*){weight_string}Flash,{params['first_k_channel']},"
+ f"{params['kernel_h']},{params['kernel_w']},NULL,"
+ f"{output_address_string},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ "(float*)sbuf,1);\n"
)
else:
raise NotImplementedError
else:
string += (
f"{function_name}(conv_params,{input_address_string},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"{weight_string},{params['kernel_h']},{params['kernel_w']},NULL,"
+ f"{output_address_string},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ "(float*)sbuf,1);\n"
)
elif params["group"] == 1 and not tflite_op:
# function name
if (
params["kernel_h"] == 1
and params["kernel_w"] == 1
and params["input_h"] == 1
and params["input_w"] == 1
and params["output_h"] == 1
and params["output_w"] == 1
and params["input_c"] / 10 == 1
and params["output_c"] % 8 == 0
):
if params["input_dtype"] == "int8":
function_name = "pointwise_conv_1row10col_10inputdepth"
else:
function_name = "pointwise_conv_fp_1row10col_10inputdepth"
elif (
params["kernel_h"] == 1
and params["kernel_w"] == 1
and params["input_h"] * params["input_w"] >= 4
and params["output_c"] % 4 == 0
):
if params["input_dtype"] == "int8":
function_name = "pointwise_conv_4row4col"
else:
function_name = "pointwise_conv_fp_4row4col"
else:
raise NotImplementedError
if params["kernel_layout"] == "IOHW":
function_name += "_IOHW"
# int8 bp support
if params["input_dtype"] == "int8":
function_name += "_int8input"
elif params["output_dtype"] == "int8":
function_name += "_int8output"
# weight name
if isinstance(params["weight_name"], str) and isweightstr(params["weight_name"]):
weight_string = params["weight_name"]
else:
weight_string = f"weight_fp{params['parsed_trainable']}"
if params["input2_dtype"] == "int8" and params["input_dtype"] in ["float32", "int8"]:
if params["first_k_channel"] is None:
string += (
f"{function_name}_int8weight("
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"(q7_t*){weight_string},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ f"{params['float_min']},{params['float_max']},"
)
# int8 bp support
if params["output_dtype"] == "int8":
string += (
"(float*)sbuf, NULL, 1);\n"
if not norm_buffer_add
else f"(float*)sbuf, {norm_buffer_add}, 1);\n"
)
else:
string += "(float*)sbuf, 1);\n"
else:
function_name += "_int8weight_partialCH"
if params["first_k_channel"] % 8 == 0:
function_name += "_8innercol"
elif params["first_k_channel"] % 4 == 0:
function_name += "_4innercol"
else:
raise NotImplementedError
string += (
f"{function_name}("
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"(q7_t*){weight_string},(q7_t*){weight_string}Flash,{params['first_k_channel']},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ f"{params['float_min']},{params['float_max']},"
)
# int8 bp support
if params["output_dtype"] == "int8":
string += (
"(float*)sbuf, NULL, 1);\n"
if not norm_buffer_add
else f"(float*)sbuf, {norm_buffer_add}, 1);\n"
)
else:
string += "(float*)sbuf, 1);\n"
else:
string += (
f"{function_name}("
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"{weight_string},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ f"{params['float_min']},{params['float_max']},"
)
# int8 bp support
if params["output_dtype"] == "int8":
string += (
"(float*)sbuf, NULL, 1);\n"
if not norm_buffer_add
else f"(float*)sbuf, {norm_buffer_add}, 1);\n"
)
else:
string += "(float*)sbuf,1);\n"
elif params["group"] == params["input_c"] and params["group"] == params["output_c"] and tflite_op:
string += f"conv_params.stride_height = {params['stride_h']};\n"
string += f"conv_params.stride_width = {params['stride_w']};\n"
string += "conv_params.dilation_width_factor = 0;\n"
string += "conv_params.dilation_height_factor = 0;\n"
string += f"conv_params.input_offset = {params['input_zero_point']};\n"
string += f"conv_params.output_offset = {params['output_zero_point']};\n"
string += f"conv_params.padding_values.width = {params['padding_w']};\n"
string += f"conv_params.padding_values.height = {params['padding_h']};\n"
string += "conv_params.quantized_activation_min = -128;\n"
string += "conv_params.quantized_activation_max = 127;\n"
string += f"conv_params.float_activation_min = {params['float_min']};\n"
string += f"conv_params.float_activation_max = {params['float_max']};\n"
if isinstance(params["weight_name"], str) and isweightstr(params["weight_name"]):
weight_string = params["weight_name"]
else:
weight_string = f"weight_fp{params['parsed_trainable']}"
if params["kernel_layout"] == "OIHW":
function_name = "TFLite_TransposeDepthwiseConv"
elif params["kernel_layout"] == "IOHW":
function_name = "TFLite_TransposeDepthwiseConv"
if params["input2_dtype"] == "int8" and params["input_dtype"] == "float32":
string += (
f"{function_name}_int8weight(conv_params,"
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"{weight_string},{params['kernel_h']},{params['kernel_w']},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
)
string += "(float*)sbuf,1);\n"
else:
string += (
f"{function_name}(conv_params,"
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"{weight_string},{params['kernel_h']},{params['kernel_w']},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
)
string += "(float*)sbuf,1);\n"
elif params["group"] == params["input_c"] and params["group"] == params["output_c"] and not tflite_op:
# function name
function_name = "transpose_depthwise_conv_fp_kernel"
if params["stride_h"] == 1:
outpad = 0
elif params["stride_h"] == 2:
outpad = params["output_h"] - (
(params["input_h"] - 1) * params["stride_h"] - 2 * params["padding_h"] + params["kernel_h"]
)
else:
raise NotImplementedError
function_name += (
f"{str(params['kernel_h'])}_stride{str(params['stride_h'])}_"
+ f"inpad{str(params['padding_h'])}_outpad{str(outpad)}"
)
if params["kernel_layout"] == "IOHW":
function_name += "_IOHW"
# weight name
if isinstance(params["weight_name"], str) and isweightstr(params["weight_name"]):
weight_string = params["weight_name"]
else:
weight_string = f"weight_fp{params['parsed_trainable']}"
if params["input2_dtype"] == "int8" and params["input_dtype"] == "float32":
string += (
f"{function_name}_int8weight("
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"{weight_string},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ f"{params['float_min']},{params['float_max']},"
)
# Assume padding value is 0.
if params["output_dtype"] == "int8":
string += (
"(float*)sbuf, NULL, 1,0);\n"
if not norm_buffer_add
else f"(float*)sbuf, {norm_buffer_add}, 1, 0);\n"
)
else:
string += "(float*)sbuf,1,0);\n"
else:
string += (
f"{function_name}("
+ f"{self._getBufferstrCast(params['input_buf_add'], params['input_buf_add_offset'])},"
+ f"{params['input_h']},{params['input_w']},{params['input_c']},"
+ f"{weight_string},NULL,"
+ f"{self._getBufferstrCast(params['output_buf_add'], params['output_buf_add_offset'])},"
+ f"{str(params['output_h'])},{str(params['output_w'])},{str(params['output_c'])},"
+ f"{params['float_min']},{params['float_max']},"
)
# Assume padding value is 0.
if params["output_dtype"] == "int8":
string += (
"(float*)sbuf, NULL, 1,0);\n"
if not norm_buffer_add
else f"(float*)sbuf, {norm_buffer_add}, 1, 0);\n"
)
else:
string += "(float*)sbuf, 1,0);\n"
else:
raise NotImplementedError
return string