Files
tinyengine/examples/vww.py
Wei-Ming Chen 8ff3ade724 Use local mcunet submodule
* use local mcunet

* reverst default net

* minor
2023-01-16 10:30:17 -08:00

33 lines
1.2 KiB
Python

# ----------------------------------------------------------------------
# Project: TinyEngine
# Title: vww_to_c.py
#
# Reference papers:
# - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020
# - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021
# - MCUNetV3: On-Device Training Under 256KB Memory, NeurIPS 2022
# Contact authors:
# - Wei-Ming Chen, wmchen@mit.edu
# - Wei-Chen Wang, wweichen@mit.edu
# - Ji Lin, jilin@mit.edu
# - Ligeng Zhu, ligeng@mit.edu
# - Song Han, songhan@mit.edu
#
# Target ISA: ARMv7E-M
# ----------------------------------------------------------------------
from code_generator.CodegenUtilTFlite import GenerateSourceFilesFromTFlite
from mcunet.mcunet.model_zoo import download_tflite
# 1: Let's first build our pretrained VWW model
# 2: To deploy the model on MCU, we need to first convert the model to an Intermediate Representation (IR) and
# get the weight parameters and scale parameters.
tflite_path = download_tflite(net_id="mcunet-vww1")
# 3. Let's generate source code for on-device deployment
peakmem = GenerateSourceFilesFromTFlite(
tflite_path,
life_cycle_path="./lifecycle.png",
)
print(f"Peak memory: {peakmem} bytes")