mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-16 13:57:05 +08:00
remove goturn related code
This commit is contained in:
@@ -286,45 +286,6 @@ public:
|
||||
virtual ~TrackerKCF() CV_OVERRIDE {}
|
||||
};
|
||||
|
||||
#if 0 // legacy variant is not available
|
||||
/** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
|
||||
|
||||
* GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
|
||||
* GOTURN is much faster due to offline training without online fine-tuning nature.
|
||||
* GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
|
||||
* we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
|
||||
* robust to viewpoint changes, lighting changes, and deformations.
|
||||
* Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
|
||||
* Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
|
||||
* Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
|
||||
* As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
|
||||
* Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
|
||||
* <https://github.com/Auron-X/GOTURN_Training_Toolkit>
|
||||
* GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
|
||||
*/
|
||||
class CV_EXPORTS_W TrackerGOTURN : public cv::legacy::Tracker
|
||||
{
|
||||
public:
|
||||
struct CV_EXPORTS Params
|
||||
{
|
||||
Params();
|
||||
void read(const FileNode& /*fn*/);
|
||||
void write(FileStorage& /*fs*/) const;
|
||||
String modelTxt;
|
||||
String modelBin;
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters GOTURN parameters TrackerGOTURN::Params
|
||||
*/
|
||||
static Ptr<legacy::TrackerGOTURN> create(const TrackerGOTURN::Params ¶meters);
|
||||
|
||||
CV_WRAP static Ptr<legacy::TrackerGOTURN> create();
|
||||
|
||||
virtual ~TrackerGOTURN() CV_OVERRIDE {}
|
||||
};
|
||||
#endif
|
||||
|
||||
/** @brief the MOSSE (Minimum Output Sum of Squared %Error) tracker
|
||||
|
||||
The implementation is based on @cite MOSSE Visual Object Tracking using Adaptive Correlation Filters
|
||||
|
@@ -5,7 +5,6 @@ import org.opencv.core.CvException;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
import org.opencv.video.Tracker;
|
||||
import org.opencv.video.TrackerGOTURN;
|
||||
import org.opencv.tracking.TrackerKCF;
|
||||
import org.opencv.video.TrackerMIL;
|
||||
|
||||
@@ -16,16 +15,6 @@ public class TrackerCreateTest extends OpenCVTestCase {
|
||||
super.setUp();
|
||||
}
|
||||
|
||||
|
||||
public void testCreateTrackerGOTURN() {
|
||||
try {
|
||||
Tracker tracker = TrackerGOTURN.create();
|
||||
assert(tracker != null);
|
||||
} catch (CvException e) {
|
||||
// expected, model files may be missing
|
||||
}
|
||||
}
|
||||
|
||||
public void testCreateTrackerKCF() {
|
||||
Tracker tracker = TrackerKCF.create();
|
||||
}
|
||||
|
@@ -11,10 +11,6 @@ class tracking_contrib_test(NewOpenCVTests):
|
||||
|
||||
t = cv.TrackerMIL_create()
|
||||
t = cv.TrackerKCF_create()
|
||||
try:
|
||||
t = cv.TrackerGOTURN_create()
|
||||
except cv.error as e:
|
||||
pass # may fail due to missing DL model files
|
||||
|
||||
def test_createLegacyTracker(self):
|
||||
|
||||
@@ -22,7 +18,6 @@ class tracking_contrib_test(NewOpenCVTests):
|
||||
t = cv.legacy.TrackerMIL_create()
|
||||
t = cv.legacy.TrackerKCF_create()
|
||||
t = cv.legacy.TrackerMedianFlow_create()
|
||||
#t = cv.legacy.TrackerGOTURN_create()
|
||||
t = cv.legacy.TrackerMOSSE_create()
|
||||
t = cv.legacy.TrackerCSRT_create()
|
||||
|
||||
|
@@ -1,230 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
//Demo of GOTURN tracker
|
||||
//In order to use GOTURN tracker, GOTURN architecture goturn.prototxt and goturn.caffemodel are required to exist in root folder.
|
||||
//There are 2 ways to get caffemodel:
|
||||
//1 - Train you own GOTURN model using <https://github.com/Auron-X/GOTURN_Training_Toolkit>
|
||||
//2 - Download pretrained caffemodel from <https://github.com/opencv/opencv_extra>
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#if defined(HAVE_OPENCV_DNN) && defined(HAVE_OPENCV_DATASETS)
|
||||
|
||||
#include "opencv2/datasets/track_alov.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/tracking.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::datasets;
|
||||
|
||||
#define NUM_TEST_FRAMES 1000
|
||||
|
||||
static Mat image;
|
||||
static bool paused;
|
||||
static bool selectObjects = false;
|
||||
static bool startSelection = false;
|
||||
static Rect boundingBox;
|
||||
|
||||
static const char* keys =
|
||||
{ "{@dataset_path || Dataset path }"
|
||||
"{@dataset_id |1| Dataset ID }"
|
||||
};
|
||||
|
||||
static void onMouse(int event, int x, int y, int, void*)
|
||||
{
|
||||
if (!selectObjects)
|
||||
{
|
||||
switch (event)
|
||||
{
|
||||
case EVENT_LBUTTONDOWN:
|
||||
//set origin of the bounding box
|
||||
startSelection = true;
|
||||
boundingBox.x = x;
|
||||
boundingBox.y = y;
|
||||
boundingBox.width = boundingBox.height = 0;
|
||||
break;
|
||||
case EVENT_LBUTTONUP:
|
||||
//sei with and height of the bounding box
|
||||
boundingBox.width = std::abs(x - boundingBox.x);
|
||||
boundingBox.height = std::abs(y - boundingBox.y);
|
||||
paused = false;
|
||||
selectObjects = true;
|
||||
startSelection = false;
|
||||
break;
|
||||
case EVENT_MOUSEMOVE:
|
||||
|
||||
if (startSelection && !selectObjects)
|
||||
{
|
||||
//draw the bounding box
|
||||
Mat currentFrame;
|
||||
image.copyTo(currentFrame);
|
||||
rectangle(currentFrame, Point((int)boundingBox.x, (int)boundingBox.y), Point(x, y), Scalar(255, 0, 0), 2, 1);
|
||||
imshow("GOTURN Tracking", currentFrame);
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout << "\nThis example is a simple demo of GOTURN tracking on ALOV300++ dataset"
|
||||
"ALOV dataset contains videos with ID range: 1~314\n"
|
||||
"-- pause video [p] and draw a bounding boxes around the targets to start the tracker\n"
|
||||
"Example:\n"
|
||||
"./goturnTracker <dataset_path> <dataset_id>\n"
|
||||
<< endl;
|
||||
|
||||
cout << "\n\nHot keys: \n"
|
||||
"\tq - quit the program\n"
|
||||
"\tp - pause video\n";
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
string datasetRootPath = parser.get<string>(0);
|
||||
int datasetID = parser.get<int>(1);
|
||||
|
||||
if (datasetRootPath.empty())
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame;
|
||||
paused = false;
|
||||
namedWindow("GOTURN Tracking", 0);
|
||||
setMouseCallback("GOTURN Tracking", onMouse, 0);
|
||||
|
||||
//Create GOTURN tracker
|
||||
auto tracker = TrackerGOTURN::create();
|
||||
|
||||
//Load and init full ALOV300++ dataset with a given datasetID, as alternative you can use loadAnnotatedOnly(..)
|
||||
//to load only frames with labelled ground truth ~ every 5-th frame
|
||||
Ptr<cv::datasets::TRACK_alov> dataset = TRACK_alov::create();
|
||||
dataset->load(datasetRootPath);
|
||||
dataset->initDataset(datasetID);
|
||||
//Read first frame
|
||||
dataset->getNextFrame(frame);
|
||||
if (frame.empty())
|
||||
{
|
||||
cout << "invalid dataset: " << datasetRootPath << endl;
|
||||
return -2;
|
||||
}
|
||||
|
||||
frame.copyTo(image);
|
||||
rectangle(image, boundingBox, Scalar(255, 0, 0), 2, 1);
|
||||
imshow("GOTURN Tracking", image);
|
||||
|
||||
bool initialized = false;
|
||||
paused = true;
|
||||
int frameCounter = 0;
|
||||
|
||||
//Time measurment
|
||||
int64 e3 = getTickCount();
|
||||
|
||||
for (;;)
|
||||
{
|
||||
if (!paused)
|
||||
{
|
||||
//Time measurment
|
||||
int64 e1 = getTickCount();
|
||||
if (initialized){
|
||||
if (!dataset->getNextFrame(frame))
|
||||
break;
|
||||
frame.copyTo(image);
|
||||
}
|
||||
|
||||
if (!initialized && selectObjects)
|
||||
{
|
||||
//Initialize the tracker and add targets
|
||||
tracker->init(frame, boundingBox);
|
||||
rectangle(frame, boundingBox, Scalar(0, 0, 255), 2, 1);
|
||||
initialized = true;
|
||||
}
|
||||
else if (initialized)
|
||||
{
|
||||
//Update all targets
|
||||
if (tracker->update(frame, boundingBox))
|
||||
{
|
||||
rectangle(frame, boundingBox, Scalar(0, 0, 255), 2, 1);
|
||||
}
|
||||
}
|
||||
imshow("GOTURN Tracking", frame);
|
||||
frameCounter++;
|
||||
//Time measurment
|
||||
int64 e2 = getTickCount();
|
||||
double t1 = (e2 - e1) / getTickFrequency();
|
||||
cout << frameCounter << "\tframe : " << t1 * 1000.0 << "ms" << endl;
|
||||
}
|
||||
|
||||
char c = (char)waitKey(2);
|
||||
if (c == 'q')
|
||||
break;
|
||||
if (c == 'p')
|
||||
paused = !paused;
|
||||
}
|
||||
|
||||
//Time measurment
|
||||
int64 e4 = getTickCount();
|
||||
double t2 = (e4 - e3) / getTickFrequency();
|
||||
cout << "Average Time for Frame: " << t2 * 1000.0 / frameCounter << "ms" << endl;
|
||||
cout << "Average FPS: " << 1.0 / t2*frameCounter << endl;
|
||||
|
||||
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else // ! HAVE_OPENCV_DNN && HAVE_OPENCV_DATASETS
|
||||
#include <opencv2/core.hpp>
|
||||
int main() {
|
||||
CV_Error(cv::Error::StsNotImplemented , "this sample needs to be built with opencv_datasets and opencv_dnn !");
|
||||
return -1;
|
||||
}
|
||||
#endif
|
@@ -20,8 +20,6 @@ inline cv::Ptr<cv::Tracker> createTrackerByName(const std::string& name)
|
||||
tracker = legacy::upgradeTrackingAPI(legacy::TrackerMedianFlow::create());
|
||||
else if (name == "MIL")
|
||||
tracker = cv::TrackerMIL::create();
|
||||
else if (name == "GOTURN")
|
||||
tracker = cv::TrackerGOTURN::create();
|
||||
else if (name == "MOSSE")
|
||||
tracker = legacy::upgradeTrackingAPI(legacy::TrackerMOSSE::create());
|
||||
else if (name == "CSRT")
|
||||
@@ -48,8 +46,6 @@ inline cv::Ptr<cv::legacy::Tracker> createTrackerByName_legacy(const std::string
|
||||
tracker = legacy::TrackerMedianFlow::create();
|
||||
else if (name == "MIL")
|
||||
tracker = legacy::TrackerMIL::create();
|
||||
else if (name == "GOTURN")
|
||||
CV_Error(cv::Error::StsNotImplemented, "FIXIT: migration on new API is required");
|
||||
else if (name == "MOSSE")
|
||||
tracker = legacy::TrackerMOSSE::create();
|
||||
else if (name == "CSRT")
|
||||
|
@@ -22,7 +22,7 @@ static void help()
|
||||
"Example of <video_name> is in opencv_extra/testdata/cv/tracking/\n"
|
||||
"Call:\n"
|
||||
"./tracker <tracker_algorithm> <video_name> <start_frame> [<bounding_frame>]\n"
|
||||
"tracker_algorithm can be: MIL, BOOSTING, MEDIANFLOW, TLD, KCF, GOTURN, MOSSE.\n"
|
||||
"tracker_algorithm can be: MIL, BOOSTING, MEDIANFLOW, TLD, KCF, MOSSE.\n"
|
||||
<< endl;
|
||||
|
||||
cout << "\n\nHot keys: \n"
|
||||
|
@@ -50,7 +50,6 @@ Explanation
|
||||
+ MEDIANFLOW
|
||||
+ TLD
|
||||
+ KCF
|
||||
+ GOTURN
|
||||
+ MOSSE
|
||||
|
||||
Each tracker algorithm has their own advantages and disadvantages, please refer the documentation of @ref cv::Tracker for more detailed information.
|
||||
|
Reference in New Issue
Block a user