mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 12:55:15 +08:00
Update webcam_demo.cpp
This commit is contained in:
@@ -1,21 +1,19 @@
|
||||
/*
|
||||
* webcam-demo.cpp
|
||||
*
|
||||
* A demo program of End-to-end Scene Text Detection and Recognition.
|
||||
* A demo program of End-to-end Scene Text Detection and Recognition using webcam or video.
|
||||
*
|
||||
* Created on: Jul 31, 2014
|
||||
* Author: Lluis Gomez i Bigorda <lgomez AT cvc.uab.es>
|
||||
*/
|
||||
|
||||
#include "opencv2/text.hpp"
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/features2d.hpp"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::text;
|
||||
@@ -32,7 +30,7 @@ private:
|
||||
public:
|
||||
Parallel_extractCSER(vector<Mat> &_channels, vector< vector<ERStat> > &_regions,
|
||||
vector<Ptr<ERFilter> >_er_filter1, vector<Ptr<ERFilter> >_er_filter2)
|
||||
: channels(_channels),regions(_regions),er_filter1(_er_filter1),er_filter2(_er_filter2){}
|
||||
: channels(_channels),regions(_regions),er_filter1(_er_filter1),er_filter2(_er_filter2) {}
|
||||
|
||||
virtual void operator()( const cv::Range &r ) const
|
||||
{
|
||||
@@ -75,34 +73,81 @@ public:
|
||||
Parallel_OCR & operator=(const Parallel_OCR &a);
|
||||
};
|
||||
|
||||
|
||||
//Discard wrongly recognised strings
|
||||
bool isRepetitive(const string& s);
|
||||
//Draw ER's in an image via floodFill
|
||||
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation);
|
||||
|
||||
//Perform text detection and recognition from webcam
|
||||
const char* keys =
|
||||
{
|
||||
"{@input | 0 | camera index or video file name}"
|
||||
"{ image i | | specify input image}"
|
||||
};
|
||||
|
||||
//Perform text detection and recognition from webcam or video
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
cout << endl << argv[0] << endl << endl;
|
||||
cout << "A demo program of End-to-end Scene Text Detection and Recognition using webcam." << endl << endl;
|
||||
cout << " Usage: " << argv[0] << " [camera_index]" << endl << endl;
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
cout << "A demo program of End-to-end Scene Text Detection and Recognition using webcam or video." << endl << endl;
|
||||
cout << " Keys: " << endl;
|
||||
cout << " Press 'r' to switch between MSER/CSER regions." << endl;
|
||||
cout << " Press 'g' to switch between Horizontal and Arbitrary oriented grouping." << endl;
|
||||
cout << " Press 'o' to switch between OCRTesseract/OCRHMMDecoder recognition." << endl;
|
||||
cout << " Press 's' to scale down frame size to 320x240." << endl;
|
||||
cout << " Press 'ESC' to exit." << endl << endl;
|
||||
parser.printMessage();
|
||||
|
||||
VideoCapture cap;
|
||||
Mat frame, image, gray, out_img;
|
||||
String input = parser.get<String>("@input");
|
||||
String image_file_name = parser.get<String>("image");
|
||||
if (image_file_name != "")
|
||||
{
|
||||
image = imread(image_file_name);
|
||||
if (image.empty())
|
||||
{
|
||||
cout << "\nunable to open " << image_file_name << "\nprogram terminated!\n";
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "\nimage " << image_file_name << " loaded!\n";
|
||||
frame = image.clone();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "\nInitializing capturing... ";
|
||||
if (input.size() == 1 && isdigit(input[0]))
|
||||
cap.open(input[0] - '0');
|
||||
else
|
||||
cap.open(input);
|
||||
|
||||
if (!cap.isOpened())
|
||||
{
|
||||
cout << "\nCould not initialize capturing!\n";
|
||||
return 1;
|
||||
}
|
||||
|
||||
cout << " Done!" << endl;
|
||||
|
||||
cap.read(frame);
|
||||
}
|
||||
|
||||
namedWindow("recognition",WINDOW_NORMAL);
|
||||
imshow("recognition", frame);
|
||||
waitKey(1);
|
||||
|
||||
bool downsize = false;
|
||||
int REGION_TYPE = 1;
|
||||
int GROUPING_ALGORITHM = 0;
|
||||
int RECOGNITION = 0;
|
||||
char *region_types_str[2] = {const_cast<char *>("ERStats"), const_cast<char *>("MSER")};
|
||||
char *grouping_algorithms_str[2] = {const_cast<char *>("exhaustive_search"), const_cast<char *>("multioriented")};
|
||||
char *recognitions_str[2] = {const_cast<char *>("Tesseract"), const_cast<char *>("NM_chain_features + KNN")};
|
||||
|
||||
Mat frame,grey,orig_grey,out_img;
|
||||
String region_types_str[2] = {"ERStats", "MSER"};
|
||||
String grouping_algorithms_str[2] = {"exhaustive_search", "multioriented"};
|
||||
String recognitions_str[2] = {"Tesseract", "NM_chain_features + KNN"};
|
||||
|
||||
vector<Mat> channels;
|
||||
vector<vector<ERStat> > regions(2); //two channels
|
||||
|
||||
@@ -118,15 +163,13 @@ int main(int argc, char* argv[])
|
||||
er_filters2.push_back(er_filter2);
|
||||
}
|
||||
|
||||
//double t_r = getTickCount();
|
||||
|
||||
//Initialize OCR engine (we initialize 10 instances in order to work several recognitions in parallel)
|
||||
cout << "Initializing OCR engines ..." << endl;
|
||||
cout << "Initializing OCR engines ... ";
|
||||
int num_ocrs = 10;
|
||||
vector< Ptr<OCRTesseract> > ocrs;
|
||||
for (int o=0; o<num_ocrs; o++)
|
||||
{
|
||||
ocrs.push_back(OCRTesseract::create());
|
||||
ocrs.push_back(OCRTesseract::create());
|
||||
}
|
||||
|
||||
Mat transition_p;
|
||||
@@ -140,26 +183,12 @@ int main(int argc, char* argv[])
|
||||
vector< Ptr<OCRHMMDecoder> > decoders;
|
||||
for (int o=0; o<num_ocrs; o++)
|
||||
{
|
||||
decoders.push_back(OCRHMMDecoder::create(loadOCRHMMClassifierNM("OCRHMM_knn_model_data.xml.gz"),
|
||||
voc, transition_p, emission_p));
|
||||
decoders.push_back(OCRHMMDecoder::create(loadOCRHMMClassifierNM("OCRHMM_knn_model_data.xml.gz"),
|
||||
voc, transition_p, emission_p));
|
||||
}
|
||||
cout << " Done!" << endl;
|
||||
|
||||
//cout << "TIME_OCR_INITIALIZATION_ALT = "<< ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
|
||||
|
||||
|
||||
int cam_idx = 0;
|
||||
if (argc > 1)
|
||||
cam_idx = atoi(argv[1]);
|
||||
|
||||
VideoCapture cap(cam_idx);
|
||||
if(!cap.isOpened())
|
||||
{
|
||||
cout << "ERROR: Cannot open default camera (0)." << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
while (cap.read(frame))
|
||||
while ( true )
|
||||
{
|
||||
double t_all = (double)getTickCount();
|
||||
|
||||
@@ -167,93 +196,65 @@ int main(int argc, char* argv[])
|
||||
resize(frame,frame,Size(320,240));
|
||||
|
||||
/*Text Detection*/
|
||||
|
||||
cvtColor(frame,grey,COLOR_RGB2GRAY);
|
||||
grey.copyTo(orig_grey);
|
||||
cvtColor(frame,gray,COLOR_BGR2GRAY);
|
||||
// Extract channels to be processed individually
|
||||
channels.clear();
|
||||
channels.push_back(grey);
|
||||
channels.push_back(255-grey);
|
||||
|
||||
channels.push_back(gray);
|
||||
channels.push_back(255-gray);
|
||||
|
||||
regions[0].clear();
|
||||
regions[1].clear();
|
||||
//double t_d = (double)getTickCount();
|
||||
|
||||
switch (REGION_TYPE)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
parallel_for_(cv::Range(0,(int)channels.size()), Parallel_extractCSER(channels,regions,er_filters1,er_filters2));
|
||||
case 0: // ERStats
|
||||
parallel_for_(cv::Range(0, (int)channels.size()), Parallel_extractCSER(channels, regions, er_filters1, er_filters2));
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
//Extract MSER
|
||||
case 1: // MSER
|
||||
vector<vector<Point> > contours;
|
||||
vector<Rect> bboxes;
|
||||
Ptr<MSER> mser = MSER::create(21,(int)(0.00002*grey.cols*grey.rows),(int)(0.05*grey.cols*grey.rows),1,0.7);
|
||||
mser->detectRegions(grey, contours, bboxes);
|
||||
Ptr<MSER> mser = MSER::create(21, (int)(0.00002*gray.cols*gray.rows), (int)(0.05*gray.cols*gray.rows), 1, 0.7);
|
||||
mser->detectRegions(gray, contours, bboxes);
|
||||
|
||||
//Convert the output of MSER to suitable input for the grouping/recognition algorithms
|
||||
if (contours.size() > 0)
|
||||
MSERsToERStats(grey, contours, regions);
|
||||
|
||||
MSERsToERStats(gray, contours, regions);
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
//cout << "TIME_REGION_DETECTION_ALT = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;
|
||||
|
||||
// Detect character groups
|
||||
//double t_g = getTickCount();
|
||||
vector< vector<Vec2i> > nm_region_groups;
|
||||
vector<Rect> nm_boxes;
|
||||
switch (GROUPING_ALGORITHM)
|
||||
{
|
||||
case 0:
|
||||
{
|
||||
case 0: // exhaustive_search
|
||||
erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_HORIZ);
|
||||
break;
|
||||
}
|
||||
case 1:
|
||||
{
|
||||
case 1: //multioriented
|
||||
erGrouping(frame, channels, regions, nm_region_groups, nm_boxes, ERGROUPING_ORIENTATION_ANY, "./trained_classifier_erGrouping.xml", 0.5);
|
||||
break;
|
||||
}
|
||||
}
|
||||
//cout << "TIME_GROUPING_ALT = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;
|
||||
|
||||
|
||||
|
||||
|
||||
/*Text Recognition (OCR)*/
|
||||
|
||||
|
||||
frame.copyTo(out_img);
|
||||
int scale = downsize ? 2 : 1;
|
||||
float scale_img = (float)((600.f/frame.rows)/scale);
|
||||
float scale_font = (float)(2-scale_img)/1.4f;
|
||||
int bottom_bar_height= out_img.rows/7 ;
|
||||
copyMakeBorder(frame, out_img, 0, bottom_bar_height, 0, 0, BORDER_CONSTANT, Scalar(150, 150, 150));
|
||||
float scale_font = (float)(bottom_bar_height /85.0);
|
||||
vector<string> words_detection;
|
||||
float min_confidence1 = 0.f, min_confidence2 = 0.f;
|
||||
|
||||
if (RECOGNITION == 0)
|
||||
{
|
||||
min_confidence1 = 51.f; min_confidence2 = 60.f;
|
||||
min_confidence1 = 51.f;
|
||||
min_confidence2 = 60.f;
|
||||
}
|
||||
|
||||
vector<Mat> detections;
|
||||
|
||||
//t_r = getTickCount();
|
||||
|
||||
for (int i=0; i<(int)nm_boxes.size(); i++)
|
||||
{
|
||||
rectangle(out_img, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(255,255,0),3);
|
||||
|
||||
|
||||
Mat group_img = Mat::zeros(frame.rows+2, frame.cols+2, CV_8UC1);
|
||||
er_draw(channels, regions, nm_region_groups[i], group_img);
|
||||
group_img(nm_boxes[i]).copyTo(group_img);
|
||||
@@ -268,27 +269,25 @@ int main(int argc, char* argv[])
|
||||
// parallel process detections in batches of ocrs.size() (== num_ocrs)
|
||||
for (int i=0; i<(int)detections.size(); i=i+(int)num_ocrs)
|
||||
{
|
||||
Range r;
|
||||
if (i+(int)num_ocrs <= (int)detections.size())
|
||||
r = Range(i,i+(int)num_ocrs);
|
||||
else
|
||||
r = Range(i,(int)detections.size());
|
||||
Range r;
|
||||
if (i+(int)num_ocrs <= (int)detections.size())
|
||||
r = Range(i,i+(int)num_ocrs);
|
||||
else
|
||||
r = Range(i,(int)detections.size());
|
||||
|
||||
switch(RECOGNITION)
|
||||
{
|
||||
case 0:
|
||||
parallel_for_(r, Parallel_OCR<OCRTesseract>(detections, outputs, boxes, words, confidences, ocrs));
|
||||
break;
|
||||
case 1:
|
||||
parallel_for_(r, Parallel_OCR<OCRHMMDecoder>(detections, outputs, boxes, words, confidences, decoders));
|
||||
break;
|
||||
}
|
||||
switch(RECOGNITION)
|
||||
{
|
||||
case 0: // Tesseract
|
||||
parallel_for_(r, Parallel_OCR<OCRTesseract>(detections, outputs, boxes, words, confidences, ocrs));
|
||||
break;
|
||||
case 1: // NM_chain_features + KNN
|
||||
parallel_for_(r, Parallel_OCR<OCRHMMDecoder>(detections, outputs, boxes, words, confidences, decoders));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int i=0; i<(int)detections.size(); i++)
|
||||
{
|
||||
|
||||
outputs[i].erase(remove(outputs[i].begin(), outputs[i].end(), '\n'), outputs[i].end());
|
||||
//cout << "OCR output = \"" << outputs[i] << "\" length = " << outputs[i].size() << endl;
|
||||
if (outputs[i].size() < 3)
|
||||
@@ -311,56 +310,57 @@ int main(int argc, char* argv[])
|
||||
rectangle(out_img, boxes[i][j].tl()-Point(3,word_size.height+3), boxes[i][j].tl()+Point(word_size.width,0), Scalar(255,0,255),-1);
|
||||
putText(out_img, words[i][j], boxes[i][j].tl()-Point(1,1), FONT_HERSHEY_SIMPLEX, scale_font, Scalar(255,255,255),(int)(3*scale_font));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//cout << "TIME_OCR_ALT = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
|
||||
|
||||
|
||||
t_all = ((double)getTickCount() - t_all)*1000/getTickFrequency();
|
||||
char buff[100];
|
||||
sprintf(buff, "%2.1f Fps. @ %dx%d", (float)(1000/t_all), out_img.cols, out_img.rows);
|
||||
string fps_info = buff;
|
||||
rectangle(out_img, Point( out_img.rows-(160/scale),out_img.rows-(70/scale) ), Point(out_img.cols,out_img.rows), Scalar(255,255,255),-1);
|
||||
putText(out_img, fps_info, Point( 10,out_img.rows-(10/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
|
||||
putText(out_img, region_types_str[REGION_TYPE], Point( out_img.rows-(150/scale),out_img.rows-(50/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
|
||||
putText(out_img, grouping_algorithms_str[GROUPING_ALGORITHM], Point( out_img.rows-(150/scale),out_img.rows-(30/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
|
||||
putText(out_img, recognitions_str[RECOGNITION], Point( out_img.rows-(150/scale),out_img.rows-(10/scale) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0));
|
||||
|
||||
int text_thickness = 1+(out_img.rows/500);
|
||||
string fps_info = format("%2.1f Fps. %dx%d", (float)(1000 / t_all), frame.cols, frame.rows);
|
||||
putText(out_img, fps_info, Point( 10,out_img.rows-5 ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
|
||||
putText(out_img, region_types_str[REGION_TYPE], Point((int)(out_img.cols*0.5), out_img.rows - (int)(bottom_bar_height / 1.5)), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
|
||||
putText(out_img, grouping_algorithms_str[GROUPING_ALGORITHM], Point((int)(out_img.cols*0.5),out_img.rows-((int)(bottom_bar_height /3)+4) ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
|
||||
putText(out_img, recognitions_str[RECOGNITION], Point((int)(out_img.cols*0.5),out_img.rows-5 ), FONT_HERSHEY_DUPLEX, scale_font, Scalar(255,0,0), text_thickness);
|
||||
|
||||
imshow("recognition", out_img);
|
||||
//imwrite("recognition_alt.jpg", out_img);
|
||||
int key = waitKey(30);
|
||||
if (key == 27) //wait for key
|
||||
|
||||
if ((image_file_name == "") && !cap.read(frame))
|
||||
{
|
||||
cout << "esc key pressed" << endl;
|
||||
cout << "Capturing ended! press any key to exit." << endl;
|
||||
waitKey();
|
||||
return 0;
|
||||
}
|
||||
|
||||
int key = waitKey(30); //wait for a key press
|
||||
|
||||
switch (key)
|
||||
{
|
||||
case 27: //ESC
|
||||
cout << "ESC key pressed and exited." << endl;
|
||||
return 0;
|
||||
case 32: //SPACE
|
||||
imwrite("recognition_alt.jpg", out_img);
|
||||
break;
|
||||
case 103: //'g'
|
||||
GROUPING_ALGORITHM = (GROUPING_ALGORITHM+1)%2;
|
||||
cout << "Grouping switched to " << grouping_algorithms_str[GROUPING_ALGORITHM] << endl;
|
||||
break;
|
||||
case 111: //'o'
|
||||
RECOGNITION = (RECOGNITION+1)%2;
|
||||
cout << "OCR switched to " << recognitions_str[RECOGNITION] << endl;
|
||||
break;
|
||||
case 114: //'r'
|
||||
REGION_TYPE = (REGION_TYPE+1)%2;
|
||||
cout << "Regions switched to " << region_types_str[REGION_TYPE] << endl;
|
||||
break;
|
||||
case 115: //'s'
|
||||
downsize = !downsize;
|
||||
if (!image.empty())
|
||||
{
|
||||
frame = image.clone();
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (key)
|
||||
{
|
||||
case 103: //g
|
||||
GROUPING_ALGORITHM = (GROUPING_ALGORITHM+1)%2;
|
||||
cout << "Grouping switched to " << grouping_algorithms_str[GROUPING_ALGORITHM] << endl;
|
||||
break;
|
||||
case 111: //o
|
||||
RECOGNITION = (RECOGNITION+1)%2;
|
||||
cout << "OCR switched to " << recognitions_str[RECOGNITION] << endl;
|
||||
break;
|
||||
case 114: //r
|
||||
REGION_TYPE = (REGION_TYPE+1)%2;
|
||||
cout << "Regions switched to " << region_types_str[REGION_TYPE] << endl;
|
||||
break;
|
||||
case 115: //s
|
||||
downsize = !downsize;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
@@ -389,11 +389,9 @@ bool isRepetitive(const string& s)
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation)
|
||||
{
|
||||
for (int r=0; r<(int)group.size(); r++)
|
||||
|
Reference in New Issue
Block a user