mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 11:21:39 +08:00
Update doc for text module
This commit is contained in:
34
modules/text/doc/text.bib
Normal file
34
modules/text/doc/text.bib
Normal file
@@ -0,0 +1,34 @@
|
||||
@inproceedings{Neumann12,
|
||||
title={Scene Text Localization and Recognition},
|
||||
author={Neumann and L., Matas and J.},
|
||||
journal={ Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on},
|
||||
pages={3538--3545},
|
||||
year={2012},
|
||||
organization={IEEE}
|
||||
}
|
||||
@inproceedings{Neumann11,
|
||||
author = {Lukáš Neumann and Jiří Matas},
|
||||
title = {Text localization in real-world images using efficiently pruned exhaustive search},
|
||||
booktitle = {in Document Analysis and Recognition, 2011 International Conference on. IEEE, 2011},
|
||||
year = {},
|
||||
pages = {687--691}
|
||||
}
|
||||
@inproceedings{Gomez13,
|
||||
author = {G\'{o}mez, Llu\'{\i}s and Karatzas, Dimosthenis},
|
||||
title={Multi-script Text Extraction from Natural Scenes},
|
||||
booktitle = {Proceedings of the 2013 12th International Conference on Document Analysis and Recognition},
|
||||
series = {ICDAR '13},
|
||||
year = {2013},
|
||||
isbn = {978-0-7695-4999-6},
|
||||
pages = {467--471},
|
||||
publisher = {IEEE Computer Society}
|
||||
}
|
||||
@article{Gomez14,
|
||||
author = {Lluis Gomez i Bigorda and
|
||||
Dimosthenis Karatzas},
|
||||
title = {A Fast Hierarchical Method for Multi-script and Arbitrary Oriented
|
||||
Scene Text Extraction},
|
||||
journal = {CoRR},
|
||||
volume = {abs/1407.7504},
|
||||
year = {2014},
|
||||
}
|
@@ -54,7 +54,7 @@ Class-specific Extremal Regions for Scene Text Detection
|
||||
--------------------------------------------------------
|
||||
|
||||
The scene text detection algorithm described below has been initially proposed by Lukás Neumann &
|
||||
Jiri Matas [Neumann12]. The main idea behind Class-specific Extremal Regions is similar to the MSER
|
||||
Jiri Matas @cite Neumann11. The main idea behind Class-specific Extremal Regions is similar to the MSER
|
||||
in that suitable Extremal Regions (ERs) are selected from the whole component tree of the image.
|
||||
However, this technique differs from MSER in that selection of suitable ERs is done by a sequential
|
||||
classifier trained for character detection, i.e. dropping the stability requirement of MSERs and
|
||||
@@ -87,9 +87,9 @@ order to increase the character localization recall.
|
||||
|
||||
After the ER filtering is done on each input channel, character candidates must be grouped in
|
||||
high-level text blocks (i.e. words, text lines, paragraphs, ...). The opencv_text module implements
|
||||
two different grouping algorithms: the Exhaustive Search algorithm proposed in [Neumann11] for
|
||||
two different grouping algorithms: the Exhaustive Search algorithm proposed in @cite Neumann12 for
|
||||
grouping horizontally aligned text, and the method proposed by Lluis Gomez and Dimosthenis Karatzas
|
||||
in [Gomez13][Gomez14] for grouping arbitrary oriented text (see erGrouping).
|
||||
in @cite Gomez13 @cite Gomez14 for grouping arbitrary oriented text (see erGrouping).
|
||||
|
||||
To see the text detector at work, have a look at the textdetection demo:
|
||||
<https://github.com/opencv/opencv_contrib/blob/master/modules/text/samples/textdetection.cpp>
|
||||
|
@@ -111,7 +111,7 @@ public:
|
||||
ERStat* min_probability_ancestor;
|
||||
};
|
||||
|
||||
/** @brief Base class for 1st and 2nd stages of Neumann and Matas scene text detection algorithm [Neumann12]. :
|
||||
/** @brief Base class for 1st and 2nd stages of Neumann and Matas scene text detection algorithm @cite Neumann12. :
|
||||
|
||||
Extracts the component tree (if needed) and filter the extremal regions (ER's) by using a given classifier.
|
||||
*/
|
||||
@@ -163,31 +163,8 @@ public:
|
||||
};
|
||||
|
||||
|
||||
/*!
|
||||
Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm
|
||||
Neumann L., Matas J.: Real-Time Scene Text Localization and Recognition, CVPR 2012
|
||||
|
||||
The component tree of the image is extracted by a threshold increased step by step
|
||||
from 0 to 255, incrementally computable descriptors (aspect_ratio, compactness,
|
||||
number of holes, and number of horizontal crossings) are computed for each ER
|
||||
and used as features for a classifier which estimates the class-conditional
|
||||
probability P(er|character). The value of P(er|character) is tracked using the inclusion
|
||||
relation of ER across all thresholds and only the ERs which correspond to local maximum
|
||||
of the probability P(er|character) are selected (if the local maximum of the
|
||||
probability is above a global limit pmin and the difference between local maximum and
|
||||
local minimum is greater than minProbabilityDiff).
|
||||
|
||||
@param cb – Callback with the classifier. Default classifier can be implicitly load with function
|
||||
loadClassifierNM1(), e.g. from file in samples/cpp/trained_classifierNM1.xml
|
||||
@param thresholdDelta – Threshold step in subsequent thresholds when extracting the component tree
|
||||
@param minArea – The minimum area (% of image size) allowed for retreived ER’s
|
||||
@param maxArea – The maximum area (% of image size) allowed for retreived ER’s
|
||||
@param minProbability – The minimum probability P(er|character) allowed for retreived ER’s
|
||||
@param nonMaxSuppression – Whenever non-maximum suppression is done over the branch probabilities
|
||||
@param minProbabilityDiff – The minimum probability difference between local maxima and local minima ERs
|
||||
*/
|
||||
|
||||
/** @brief Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm [Neumann12].
|
||||
/** @brief Create an Extremal Region Filter for the 1st stage classifier of N&M algorithm @cite Neumann12.
|
||||
|
||||
@param cb : Callback with the classifier. Default classifier can be implicitly load with function
|
||||
loadClassifierNM1, e.g. from file in samples/cpp/trained_classifierNM1.xml
|
||||
@@ -213,7 +190,7 @@ CV_EXPORTS_W Ptr<ERFilter> createERFilterNM1(const Ptr<ERFilter::Callback>& cb,
|
||||
bool nonMaxSuppression = true,
|
||||
float minProbabilityDiff = (float)0.1);
|
||||
|
||||
/** @brief Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm [Neumann12].
|
||||
/** @brief Create an Extremal Region Filter for the 2nd stage classifier of N&M algorithm @cite Neumann12.
|
||||
|
||||
@param cb : Callback with the classifier. Default classifier can be implicitly load with function
|
||||
loadClassifierNM2, e.g. from file in samples/cpp/trained_classifierNM2.xml
|
||||
@@ -268,7 +245,7 @@ enum { ERFILTER_NM_RGBLGrad,
|
||||
ERFILTER_NM_IHSGrad
|
||||
};
|
||||
|
||||
/** @brief Compute the different channels to be processed independently in the N&M algorithm [Neumann12].
|
||||
/** @brief Compute the different channels to be processed independently in the N&M algorithm @cite Neumann12.
|
||||
|
||||
@param _src Source image. Must be RGB CV_8UC3.
|
||||
|
||||
@@ -289,7 +266,7 @@ CV_EXPORTS_W void computeNMChannels(InputArray _src, CV_OUT OutputArrayOfArrays
|
||||
//! text::erGrouping operation modes
|
||||
enum erGrouping_Modes {
|
||||
|
||||
/** Exhaustive Search algorithm proposed in [Neumann11] for grouping horizontally aligned text.
|
||||
/** Exhaustive Search algorithm proposed in @cite Neumann11 for grouping horizontally aligned text.
|
||||
The algorithm models a verification function for all the possible ER sequences. The
|
||||
verification fuction for ER pairs consists in a set of threshold-based pairwise rules which
|
||||
compare measurements of two regions (height ratio, centroid angle, and region distance). The
|
||||
@@ -300,7 +277,7 @@ enum erGrouping_Modes {
|
||||
consistent.
|
||||
*/
|
||||
ERGROUPING_ORIENTATION_HORIZ,
|
||||
/** Text grouping method proposed in [Gomez13][Gomez14] for grouping arbitrary oriented text. Regions
|
||||
/** Text grouping method proposed in @cite Gomez13 @cite Gomez14 for grouping arbitrary oriented text. Regions
|
||||
are agglomerated by Single Linkage Clustering in a weighted feature space that combines proximity
|
||||
(x,y coordinates) and similarity measures (color, size, gradient magnitude, stroke width, etc.).
|
||||
SLC provides a dendrogram where each node represents a text group hypothesis. Then the algorithm
|
||||
@@ -375,8 +352,8 @@ CV_EXPORTS_W void detectRegions(InputArray image, const Ptr<ERFilter>& er_filter
|
||||
/** @brief Extracts text regions from image.
|
||||
|
||||
@param image Source image where text blocks needs to be extracted from. Should be CV_8UC3 (color).
|
||||
@param er_filter1 Extremal Region Filter for the 1st stage classifier of N&M algorithm [Neumann12]
|
||||
@param er_filter2 Extremal Region Filter for the 2nd stage classifier of N&M algorithm [Neumann12]
|
||||
@param er_filter1 Extremal Region Filter for the 1st stage classifier of N&M algorithm @cite Neumann12
|
||||
@param er_filter2 Extremal Region Filter for the 2nd stage classifier of N&M algorithm @cite Neumann12
|
||||
@param groups_rects Output list of rectangle blocks with text
|
||||
@param method Grouping method (see text::erGrouping_Modes). Can be one of ERGROUPING_ORIENTATION_HORIZ, ERGROUPING_ORIENTATION_ANY.
|
||||
@param filename The XML or YAML file with the classifier model (e.g. samples/trained_classifier_erGrouping.xml). Only to use when grouping method is ERGROUPING_ORIENTATION_ANY.
|
||||
|
@@ -128,7 +128,7 @@ public:
|
||||
recognition of individual text elements found (e.g. words or text lines).
|
||||
@param component_confidences If provided the method will output a list of confidence values
|
||||
for the recognition of individual text elements found (e.g. words or text lines).
|
||||
@param component_level OCR_LEVEL_WORD (by default), or OCR_LEVEL_TEXT_LINE.
|
||||
@param component_level OCR_LEVEL_WORD (by default), or OCR_LEVEL_TEXTLINE.
|
||||
*/
|
||||
virtual void run(Mat& image, std::string& output_text, std::vector<Rect>* component_rects=NULL,
|
||||
std::vector<std::string>* component_texts=NULL, std::vector<float>* component_confidences=NULL,
|
||||
|
Reference in New Issue
Block a user