mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 21:40:49 +08:00
Merge pull request #1253 from kvmanohar22:GSoC17_dnn_objdetect
GSoC'17 Learning compact models for object detection (#1253) * Final solver and model for SqueezeNet model * update README * update dependencies and CMakeLists * add global pooling * Add training scripts * fix typo * fix dependency of caffe * fix whitespace * Add squeezedet architecture * Pascal pre process script * Adding pre process scripts * Generate the graph of the model * more readable * fix some bugs in the graph * Post process class implementation * Complete minimal post processing and standalone running * Complete the base class * remove c++11 features and fix bugs * Complete example * fix bugs * Adding final scripts * Classification scripts * Update README.md * Add example code and results * Update README.md * Re-order and fix some bugs * fix build failure * Document classes and functions * Add instructions on how to use samples * update instructionos * fix docs failure * fix conversion types * fix type conversion warning * Change examples to sample directoryu * restructure directories * add more references * fix whitespace * retain aspect ratio * Add more examples * fix docs warnings * update with links to trained weights * threshold update * png -> jpg * fix tutorial * model files * precomp.hpp , fix readme links, module dependencies * copyrights - no copyright in samples - use new style OpenCV copyright header - precomp.hpp
This commit is contained in:

committed by
Alexander Alekhin

parent
c0b298c5f3
commit
41a5a5eaf5
47
modules/dnn_objdetect/scripts/pascal_preprocess.py
Normal file
47
modules/dnn_objdetect/scripts/pascal_preprocess.py
Normal file
@@ -0,0 +1,47 @@
|
||||
from skimage import io, transform
|
||||
from multiprocessing.dummy import Pool as ThreadPool
|
||||
|
||||
def rescale(root_new, root_old, img_path, ann_path, out_shape):
|
||||
try:
|
||||
img = io.imread(root_old+"/"+img_path)
|
||||
except Exception as E:
|
||||
print E
|
||||
h, w, _ = img.shape
|
||||
f_h, f_w = float(out_shape)/h, float(out_shape)/w
|
||||
trans_img = transform.rescale(img, (f_h, f_w))
|
||||
num_objs = 0
|
||||
with open(root_old+"/"+ann_path, 'r') as f:
|
||||
ann = f.readline()
|
||||
ann = ann.rstrip()
|
||||
ann = ann.split(' ')
|
||||
ann = [float(i) for i in ann]
|
||||
num_objs = len(ann) / 5
|
||||
for idx in xrange(num_objs):
|
||||
ann[idx * 5 + 0] = int(f_w * ann[idx * 5 + 0])
|
||||
ann[idx * 5 + 1] = int(f_h * ann[idx * 5 + 1])
|
||||
ann[idx * 5 + 2] = int(f_w * ann[idx * 5 + 2])
|
||||
ann[idx * 5 + 3] = int(f_h * ann[idx * 5 + 3])
|
||||
# Write the new annotations to file
|
||||
with open(root_new+"/"+ann_path, 'w') as f_new:
|
||||
for val in ann:
|
||||
f_new.write(str(val)+' ')
|
||||
# Save the new image
|
||||
io.imwrite(root_new+"/"+img_path, trans_img)
|
||||
|
||||
def preprocess():
|
||||
source = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize/source.txt'
|
||||
root_old = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012'
|
||||
root_new = '/users2/Datasets/PASCAL_VOC/VOCdevkit/VOC2012_Resize'
|
||||
out_shape = 416
|
||||
with open(source, 'r') as src:
|
||||
lines = src.readlines()
|
||||
print 'Processing {} images and annotations'.format(len(lines))
|
||||
for line in lines:
|
||||
line = line.rstrip()
|
||||
line = line.split(' ')
|
||||
img_path = line[0]
|
||||
ann_path = line[1]
|
||||
rescale(root_new, root_old, img_path, ann_path, out_shape)
|
||||
|
||||
if __name__ == '__main__':
|
||||
preprocess()
|
Reference in New Issue
Block a user