mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 04:25:42 +08:00
Fixing warnings
This commit is contained in:
@@ -1200,6 +1200,9 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
|
|||||||
public:
|
public:
|
||||||
/**
|
/**
|
||||||
* \brief Feature type to be used in the tracking grayscale, colornames, compressed color-names
|
* \brief Feature type to be used in the tracking grayscale, colornames, compressed color-names
|
||||||
|
* The modes available now:
|
||||||
|
- "GRAY" -- Use grayscale values as the feature
|
||||||
|
- "CN" -- Color-names feature
|
||||||
*/
|
*/
|
||||||
enum MODE {GRAY, CN, CN2};
|
enum MODE {GRAY, CN, CN2};
|
||||||
|
|
||||||
@@ -1207,22 +1210,6 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
|
|||||||
{
|
{
|
||||||
/**
|
/**
|
||||||
* \brief Constructor
|
* \brief Constructor
|
||||||
* \param sigma bandwidth of the gaussian kernel
|
|
||||||
* \param lambda regularization coefficient
|
|
||||||
* \param interp_factor inear interpolation factor for model updating
|
|
||||||
* \param output_sigma_factor spatial bandwidth (proportional to target)
|
|
||||||
* \param pca_learning_rate learning rate of the compression method
|
|
||||||
* \param resize activate the resize feature to improve the processing speed
|
|
||||||
* \param split_coeff split the training coefficients into two matrices
|
|
||||||
* \param wrap_kernel wrap around the kernel values
|
|
||||||
* \param compressFeature activate pca method to compress the features
|
|
||||||
* \param max_patch_size threshold for the ROI size
|
|
||||||
* \param compressed_size feature size after compression
|
|
||||||
* \param descriptor descriptor type
|
|
||||||
* The modes available now:
|
|
||||||
- "GRAY" -- Use grayscale values as the feature
|
|
||||||
- "CN" -- Color-names feature
|
|
||||||
- "CN2" -- Compressed color-names feature
|
|
||||||
*/
|
*/
|
||||||
Params();
|
Params();
|
||||||
|
|
||||||
@@ -1244,7 +1231,7 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
|
|||||||
bool resize; //!< activate the resize feature to improve the processing speed
|
bool resize; //!< activate the resize feature to improve the processing speed
|
||||||
bool split_coeff; //!< split the training coefficients into two matrices
|
bool split_coeff; //!< split the training coefficients into two matrices
|
||||||
bool wrap_kernel; //!< wrap around the kernel values
|
bool wrap_kernel; //!< wrap around the kernel values
|
||||||
bool compress_feature; //!< activate pca method to compress the features
|
bool compress_feature; //!< activate the pca method to compress the features
|
||||||
int max_patch_size; //!< threshold for the ROI size
|
int max_patch_size; //!< threshold for the ROI size
|
||||||
int compressed_size; //!< feature size after compression
|
int compressed_size; //!< feature size after compression
|
||||||
MODE descriptor; //!< descriptor type
|
MODE descriptor; //!< descriptor type
|
||||||
|
@@ -165,16 +165,16 @@ Rect2d BoxExtractor::extract(const std::string& windowName, Mat img, bool showCr
|
|||||||
// horizontal line
|
// horizontal line
|
||||||
line(
|
line(
|
||||||
params.image,
|
params.image,
|
||||||
Point(params.box.x,params.box.y+0.5*params.box.height),
|
Point(params.box.x,params.box.y+(int)(0.5*params.box.height)),
|
||||||
Point(params.box.x+params.box.width,params.box.y+0.5*params.box.height),
|
Point(params.box.x+params.box.width,params.box.y+(int)(0.5*params.box.height)),
|
||||||
Scalar(255,0,0),2,1
|
Scalar(255,0,0),2,1
|
||||||
);
|
);
|
||||||
|
|
||||||
// vertical line
|
// vertical line
|
||||||
line(
|
line(
|
||||||
params.image,
|
params.image,
|
||||||
Point(params.box.x+0.5*params.box.width,params.box.y),
|
Point(params.box.x+(int)(0.5*params.box.width),params.box.y),
|
||||||
Point(params.box.x+0.5*params.box.width,params.box.y+params.box.height),
|
Point(params.box.x+(int)(0.5*params.box.width),params.box.y+params.box.height),
|
||||||
Scalar(255,0,0),2,1
|
Scalar(255,0,0),2,1
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user