mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-24 11:33:26 +08:00
Fixed critical bug in dnn::Dict. Fixed LRN layer implementation. Added layers test.
This commit is contained in:
@@ -192,15 +192,18 @@ inline DictValue & DictValue::operator=(const DictValue &r)
|
||||
if (&r == this)
|
||||
return *this;
|
||||
|
||||
release();
|
||||
|
||||
//how to copy anonymous union without memcpy?
|
||||
for (size_t i = 0; i < sizeof(*this); i++)
|
||||
((uchar*)this)[i] = ((uchar*)&r)[i];
|
||||
|
||||
if (r.type == cv::Param::STRING)
|
||||
{
|
||||
s = new String(*r.s);
|
||||
String *_s = new String(*r.s);
|
||||
release();
|
||||
s = _s;
|
||||
type = r.type;
|
||||
}
|
||||
else //flat structure
|
||||
{
|
||||
//how to copy anonymous union without memcpy?
|
||||
for (size_t i = 0; i < sizeof(*this); i++)
|
||||
((uchar*)this)[i] = ((uchar*)&r)[i];
|
||||
}
|
||||
|
||||
return *this;
|
||||
@@ -224,4 +227,4 @@ inline bool DictValue::isInt() const
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -253,4 +253,4 @@ Ptr<Importer> cv::dnn::createCaffeImporter(const String&, const String&)
|
||||
return Ptr<Importer>();
|
||||
}
|
||||
|
||||
#endif //HAVE_PROTOBUF
|
||||
#endif //HAVE_PROTOBUF
|
||||
|
||||
@@ -86,7 +86,7 @@ void Blob::fill(int ndims, const int *sizes, int type, void *data, bool deepCopy
|
||||
|
||||
if (deepCopy)
|
||||
{
|
||||
m.create(3, &shape[0], type);
|
||||
m.create(4, &shape[0], type);
|
||||
size_t dataSize = m.total() * m.elemSize();
|
||||
memcpy(m.data, data, dataSize);
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <algorithm>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@@ -45,8 +46,8 @@ namespace dnn
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown region type \"" + nrmType + "\"");
|
||||
|
||||
size = params.get<int>("local_size", 5);
|
||||
if (size % 2 != 1)
|
||||
CV_Error(cv::Error::StsBadArg, "LRN layer only supports odd values for local_size");
|
||||
if (size % 2 != 1 || size <= 0)
|
||||
CV_Error(cv::Error::StsBadArg, "LRN layer supports only positive odd values for local_size");
|
||||
|
||||
alpha = params.get<double>("alpha", 1);
|
||||
beta = params.get<double>("beta", 0.75);
|
||||
@@ -60,7 +61,7 @@ namespace dnn
|
||||
Vec4i shape = inputs[0]->shape();
|
||||
outputs[0].create(shape);
|
||||
|
||||
shape[1] = 1; //maybe make shape[0] = 1 too
|
||||
shape[0] = 1; //maybe make shape[0] = 1 too
|
||||
bufBlob.create(shape);
|
||||
}
|
||||
|
||||
@@ -85,26 +86,37 @@ namespace dnn
|
||||
|
||||
void LRNLayer::channelNoramlization(Blob &srcBlob, Blob &dstBlob)
|
||||
{
|
||||
CV_DbgAssert(srcBlob.rawPtr() != dstBlob.rawPtr());
|
||||
|
||||
int num = srcBlob.num();
|
||||
int channels = srcBlob.channels();
|
||||
int ksize = (size - 1) / 2;
|
||||
|
||||
for (int n = 0; n < num; n++)
|
||||
{
|
||||
Mat buf = bufBlob.getMat(n, 0);
|
||||
Mat accum = dstBlob.getMat(n, 0); //memory saving
|
||||
Mat accum = dstBlob.getMat(n, channels-1); //trick for memory saving
|
||||
accum.setTo(0);
|
||||
|
||||
for (int cn = 0; cn < std::min(ksize, channels); cn++)
|
||||
cv::accumulateSquare(srcBlob.getMat(n, cn), accum);
|
||||
|
||||
for (int cn = 0; cn < channels; cn++)
|
||||
{
|
||||
cv::accumulateSquare(srcBlob.getMat(n, cn), accum);
|
||||
}
|
||||
if (cn + ksize < channels)
|
||||
{
|
||||
cv::accumulateSquare(srcBlob.getMat(n, cn + ksize), accum);
|
||||
}
|
||||
|
||||
accum.convertTo(accum, accum.type(), alpha/channels, 1);
|
||||
cv::pow(accum, beta, accum);
|
||||
if (cn - ksize - 1 >= 0)
|
||||
{
|
||||
Mat left = srcBlob.getMat(n, cn - ksize - 1);
|
||||
cv::subtract(accum, left.mul(left), accum); //subtractSquare
|
||||
}
|
||||
|
||||
for (int cn = channels - 1; cn >= 0; cn--)
|
||||
{
|
||||
cv::divide(srcBlob.getMat(n, cn), accum, dstBlob.getMat(n, cn));
|
||||
Mat dst = dstBlob.getMat(n, cn);
|
||||
accum.convertTo(dst, dst.type(), alpha/size, 1);
|
||||
cv::pow(dst, beta, dst);
|
||||
cv::divide(srcBlob.getMat(n, cn), dst, dst);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -135,4 +147,4 @@ namespace dnn
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
250
modules/dnn/test/cnpy.cpp
Normal file
250
modules/dnn/test/cnpy.cpp
Normal file
@@ -0,0 +1,250 @@
|
||||
//Copyright (C) 2011 Carl Rogers
|
||||
//Released under MIT License
|
||||
//license available in LICENSE file, or at http://www.opensource.org/licenses/mit-license.php
|
||||
|
||||
#include"cnpy.h"
|
||||
#include<complex>
|
||||
#include<cstdlib>
|
||||
#include<algorithm>
|
||||
#include<cstring>
|
||||
#include<iomanip>
|
||||
|
||||
char cnpy::BigEndianTest() {
|
||||
unsigned char x[] = {1,0};
|
||||
short y = *(short*) x;
|
||||
return y == 1 ? '<' : '>';
|
||||
}
|
||||
|
||||
char cnpy::map_type(const std::type_info& t)
|
||||
{
|
||||
if(t == typeid(float) ) return 'f';
|
||||
if(t == typeid(double) ) return 'f';
|
||||
if(t == typeid(long double) ) return 'f';
|
||||
|
||||
if(t == typeid(int) ) return 'i';
|
||||
if(t == typeid(char) ) return 'i';
|
||||
if(t == typeid(short) ) return 'i';
|
||||
if(t == typeid(long) ) return 'i';
|
||||
if(t == typeid(long long) ) return 'i';
|
||||
|
||||
if(t == typeid(unsigned char) ) return 'u';
|
||||
if(t == typeid(unsigned short) ) return 'u';
|
||||
if(t == typeid(unsigned long) ) return 'u';
|
||||
if(t == typeid(unsigned long long) ) return 'u';
|
||||
if(t == typeid(unsigned int) ) return 'u';
|
||||
|
||||
if(t == typeid(bool) ) return 'b';
|
||||
|
||||
if(t == typeid(std::complex<float>) ) return 'c';
|
||||
if(t == typeid(std::complex<double>) ) return 'c';
|
||||
if(t == typeid(std::complex<long double>) ) return 'c';
|
||||
|
||||
else return '?';
|
||||
}
|
||||
|
||||
template<> std::vector<char>& cnpy::operator+=(std::vector<char>& lhs, const std::string rhs) {
|
||||
lhs.insert(lhs.end(),rhs.begin(),rhs.end());
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template<> std::vector<char>& cnpy::operator+=(std::vector<char>& lhs, const char* rhs) {
|
||||
//write in little endian
|
||||
size_t len = strlen(rhs);
|
||||
lhs.reserve(len);
|
||||
for(size_t byte = 0; byte < len; byte++) {
|
||||
lhs.push_back(rhs[byte]);
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
void cnpy::parse_npy_header(FILE* fp, unsigned int& word_size, unsigned int*& shape, unsigned int& ndims, bool& fortran_order) {
|
||||
char buffer[256];
|
||||
size_t res = fread(buffer,sizeof(char),11,fp);
|
||||
if(res != 11)
|
||||
throw std::runtime_error("parse_npy_header: failed fread");
|
||||
std::string header = fgets(buffer,256,fp);
|
||||
assert(header[header.size()-1] == '\n');
|
||||
|
||||
int loc1, loc2;
|
||||
|
||||
//fortran order
|
||||
loc1 = header.find("fortran_order")+16;
|
||||
fortran_order = (header.substr(loc1,5) == "True" ? true : false);
|
||||
|
||||
//shape
|
||||
loc1 = header.find("(");
|
||||
loc2 = header.find(")");
|
||||
std::string str_shape = header.substr(loc1+1,loc2-loc1-1);
|
||||
if(str_shape[str_shape.size()-1] == ',') ndims = 1;
|
||||
else ndims = std::count(str_shape.begin(),str_shape.end(),',')+1;
|
||||
shape = new unsigned int[ndims];
|
||||
for(unsigned int i = 0;i < ndims;i++) {
|
||||
loc1 = str_shape.find(",");
|
||||
shape[i] = atoi(str_shape.substr(0,loc1).c_str());
|
||||
str_shape = str_shape.substr(loc1+1);
|
||||
}
|
||||
|
||||
//endian, word size, data type
|
||||
//byte order code | stands for not applicable.
|
||||
//not sure when this applies except for byte array
|
||||
loc1 = header.find("descr")+9;
|
||||
bool littleEndian = (header[loc1] == '<' || header[loc1] == '|' ? true : false);
|
||||
assert(littleEndian);
|
||||
|
||||
//char type = header[loc1+1];
|
||||
//assert(type == map_type(T));
|
||||
|
||||
std::string str_ws = header.substr(loc1+2);
|
||||
loc2 = str_ws.find("'");
|
||||
word_size = atoi(str_ws.substr(0,loc2).c_str());
|
||||
}
|
||||
|
||||
void cnpy::parse_zip_footer(FILE* fp, unsigned short& nrecs, unsigned int& global_header_size, unsigned int& global_header_offset)
|
||||
{
|
||||
std::vector<char> footer(22);
|
||||
fseek(fp,-22,SEEK_END);
|
||||
size_t res = fread(&footer[0],sizeof(char),22,fp);
|
||||
if(res != 22)
|
||||
throw std::runtime_error("parse_zip_footer: failed fread");
|
||||
|
||||
unsigned short disk_no, disk_start, nrecs_on_disk, comment_len;
|
||||
disk_no = *(unsigned short*) &footer[4];
|
||||
disk_start = *(unsigned short*) &footer[6];
|
||||
nrecs_on_disk = *(unsigned short*) &footer[8];
|
||||
nrecs = *(unsigned short*) &footer[10];
|
||||
global_header_size = *(unsigned int*) &footer[12];
|
||||
global_header_offset = *(unsigned int*) &footer[16];
|
||||
comment_len = *(unsigned short*) &footer[20];
|
||||
|
||||
assert(disk_no == 0);
|
||||
assert(disk_start == 0);
|
||||
assert(nrecs_on_disk == nrecs);
|
||||
assert(comment_len == 0);
|
||||
}
|
||||
|
||||
cnpy::NpyArray load_the_npy_file(FILE* fp) {
|
||||
unsigned int* shape;
|
||||
unsigned int ndims, word_size;
|
||||
bool fortran_order;
|
||||
cnpy::parse_npy_header(fp,word_size,shape,ndims,fortran_order);
|
||||
unsigned long long size = 1; //long long so no overflow when multiplying by word_size
|
||||
for(unsigned int i = 0;i < ndims;i++) size *= shape[i];
|
||||
|
||||
cnpy::NpyArray arr;
|
||||
arr.word_size = word_size;
|
||||
arr.shape = std::vector<unsigned int>(shape,shape+ndims);
|
||||
delete[] shape;
|
||||
arr.data = new char[size*word_size];
|
||||
arr.fortran_order = fortran_order;
|
||||
size_t nread = fread(arr.data,word_size,size,fp);
|
||||
if(nread != size)
|
||||
throw std::runtime_error("load_the_npy_file: failed fread");
|
||||
return arr;
|
||||
}
|
||||
|
||||
cnpy::npz_t cnpy::npz_load(std::string fname) {
|
||||
FILE* fp = fopen(fname.c_str(),"rb");
|
||||
|
||||
if(!fp) printf("npz_load: Error! Unable to open file %s!\n",fname.c_str());
|
||||
assert(fp);
|
||||
|
||||
cnpy::npz_t arrays;
|
||||
|
||||
while(1) {
|
||||
std::vector<char> local_header(30);
|
||||
size_t headerres = fread(&local_header[0],sizeof(char),30,fp);
|
||||
if(headerres != 30)
|
||||
throw std::runtime_error("npz_load: failed fread");
|
||||
|
||||
//if we've reached the global header, stop reading
|
||||
if(local_header[2] != 0x03 || local_header[3] != 0x04) break;
|
||||
|
||||
//read in the variable name
|
||||
unsigned short name_len = *(unsigned short*) &local_header[26];
|
||||
std::string varname(name_len,' ');
|
||||
size_t vname_res = fread(&varname[0],sizeof(char),name_len,fp);
|
||||
if(vname_res != name_len)
|
||||
throw std::runtime_error("npz_load: failed fread");
|
||||
|
||||
//erase the lagging .npy
|
||||
varname.erase(varname.end()-4,varname.end());
|
||||
|
||||
//read in the extra field
|
||||
unsigned short extra_field_len = *(unsigned short*) &local_header[28];
|
||||
if(extra_field_len > 0) {
|
||||
std::vector<char> buff(extra_field_len);
|
||||
size_t efield_res = fread(&buff[0],sizeof(char),extra_field_len,fp);
|
||||
if(efield_res != extra_field_len)
|
||||
throw std::runtime_error("npz_load: failed fread");
|
||||
}
|
||||
|
||||
arrays[varname] = load_the_npy_file(fp);
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
return arrays;
|
||||
}
|
||||
|
||||
cnpy::NpyArray cnpy::npz_load(std::string fname, std::string varname) {
|
||||
FILE* fp = fopen(fname.c_str(),"rb");
|
||||
|
||||
if(!fp) {
|
||||
printf("npz_load: Error! Unable to open file %s!\n",fname.c_str());
|
||||
abort();
|
||||
}
|
||||
|
||||
while(1) {
|
||||
std::vector<char> local_header(30);
|
||||
size_t header_res = fread(&local_header[0],sizeof(char),30,fp);
|
||||
if(header_res != 30)
|
||||
throw std::runtime_error("npz_load: failed fread");
|
||||
|
||||
//if we've reached the global header, stop reading
|
||||
if(local_header[2] != 0x03 || local_header[3] != 0x04) break;
|
||||
|
||||
//read in the variable name
|
||||
unsigned short name_len = *(unsigned short*) &local_header[26];
|
||||
std::string vname(name_len,' ');
|
||||
size_t vname_res = fread(&vname[0],sizeof(char),name_len,fp);
|
||||
if(vname_res != name_len)
|
||||
throw std::runtime_error("npz_load: failed fread");
|
||||
vname.erase(vname.end()-4,vname.end()); //erase the lagging .npy
|
||||
|
||||
//read in the extra field
|
||||
unsigned short extra_field_len = *(unsigned short*) &local_header[28];
|
||||
fseek(fp,extra_field_len,SEEK_CUR); //skip past the extra field
|
||||
|
||||
if(vname == varname) {
|
||||
NpyArray array = load_the_npy_file(fp);
|
||||
fclose(fp);
|
||||
return array;
|
||||
}
|
||||
else {
|
||||
//skip past the data
|
||||
unsigned int size = *(unsigned int*) &local_header[22];
|
||||
fseek(fp,size,SEEK_CUR);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
printf("npz_load: Error! Variable name %s not found in %s!\n",varname.c_str(),fname.c_str());
|
||||
abort();
|
||||
}
|
||||
|
||||
cnpy::NpyArray cnpy::npy_load(std::string fname) {
|
||||
|
||||
FILE* fp = fopen(fname.c_str(), "rb");
|
||||
|
||||
if(!fp) {
|
||||
printf("npy_load: Error! Unable to open file %s!\n",fname.c_str());
|
||||
abort();
|
||||
}
|
||||
|
||||
NpyArray arr = load_the_npy_file(fp);
|
||||
|
||||
fclose(fp);
|
||||
return arr;
|
||||
}
|
||||
|
||||
|
||||
|
||||
241
modules/dnn/test/cnpy.h
Normal file
241
modules/dnn/test/cnpy.h
Normal file
@@ -0,0 +1,241 @@
|
||||
//Copyright (C) 2011 Carl Rogers
|
||||
//Released under MIT License
|
||||
//license available in LICENSE file, or at http://www.opensource.org/licenses/mit-license.php
|
||||
|
||||
#ifndef LIBCNPY_H_
|
||||
#define LIBCNPY_H_
|
||||
|
||||
#include<string>
|
||||
#include<stdexcept>
|
||||
#include<sstream>
|
||||
#include<vector>
|
||||
#include<cstdio>
|
||||
#include<typeinfo>
|
||||
#include<iostream>
|
||||
#include<cassert>
|
||||
#include<zlib.h>
|
||||
#include<map>
|
||||
|
||||
namespace cnpy {
|
||||
|
||||
struct NpyArray {
|
||||
char* data;
|
||||
std::vector<unsigned int> shape;
|
||||
unsigned int word_size;
|
||||
bool fortran_order;
|
||||
void destruct() {delete[] data;}
|
||||
};
|
||||
|
||||
struct npz_t : public std::map<std::string, NpyArray>
|
||||
{
|
||||
void destruct()
|
||||
{
|
||||
npz_t::iterator it = this->begin();
|
||||
for(; it != this->end(); ++it) (*it).second.destruct();
|
||||
}
|
||||
};
|
||||
|
||||
char BigEndianTest();
|
||||
char map_type(const std::type_info& t);
|
||||
template<typename T> std::vector<char> create_npy_header(const T* data, const unsigned int* shape, const unsigned int ndims);
|
||||
void parse_npy_header(FILE* fp,unsigned int& word_size, unsigned int*& shape, unsigned int& ndims, bool& fortran_order);
|
||||
void parse_zip_footer(FILE* fp, unsigned short& nrecs, unsigned int& global_header_size, unsigned int& global_header_offset);
|
||||
npz_t npz_load(std::string fname);
|
||||
NpyArray npz_load(std::string fname, std::string varname);
|
||||
NpyArray npy_load(std::string fname);
|
||||
|
||||
template<typename T> std::vector<char>& operator+=(std::vector<char>& lhs, const T rhs) {
|
||||
//write in little endian
|
||||
for(char byte = 0; byte < sizeof(T); byte++) {
|
||||
char val = *((char*)&rhs+byte);
|
||||
lhs.push_back(val);
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
template<> std::vector<char>& operator+=(std::vector<char>& lhs, const std::string rhs);
|
||||
template<> std::vector<char>& operator+=(std::vector<char>& lhs, const char* rhs);
|
||||
|
||||
|
||||
template<typename T> std::string tostring(T i, int pad = 0, char padval = ' ') {
|
||||
std::stringstream s;
|
||||
s << i;
|
||||
return s.str();
|
||||
}
|
||||
|
||||
template<typename T> void npy_save(std::string fname, const T* data, const unsigned int* shape, const unsigned int ndims, std::string mode = "w") {
|
||||
FILE* fp = NULL;
|
||||
|
||||
if(mode == "a") fp = fopen(fname.c_str(),"r+b");
|
||||
|
||||
if(fp) {
|
||||
//file exists. we need to append to it. read the header, modify the array size
|
||||
unsigned int word_size, tmp_dims;
|
||||
unsigned int* tmp_shape = 0;
|
||||
bool fortran_order;
|
||||
parse_npy_header(fp,word_size,tmp_shape,tmp_dims,fortran_order);
|
||||
assert(!fortran_order);
|
||||
|
||||
if(word_size != sizeof(T)) {
|
||||
std::cout<<"libnpy error: "<<fname<<" has word size "<<word_size<<" but npy_save appending data sized "<<sizeof(T)<<"\n";
|
||||
assert( word_size == sizeof(T) );
|
||||
}
|
||||
if(tmp_dims != ndims) {
|
||||
std::cout<<"libnpy error: npy_save attempting to append misdimensioned data to "<<fname<<"\n";
|
||||
assert(tmp_dims == ndims);
|
||||
}
|
||||
|
||||
for(int i = 1; i < ndims; i++) {
|
||||
if(shape[i] != tmp_shape[i]) {
|
||||
std::cout<<"libnpy error: npy_save attempting to append misshaped data to "<<fname<<"\n";
|
||||
assert(shape[i] == tmp_shape[i]);
|
||||
}
|
||||
}
|
||||
tmp_shape[0] += shape[0];
|
||||
|
||||
fseek(fp,0,SEEK_SET);
|
||||
std::vector<char> header = create_npy_header(data,tmp_shape,ndims);
|
||||
fwrite(&header[0],sizeof(char),header.size(),fp);
|
||||
fseek(fp,0,SEEK_END);
|
||||
|
||||
delete[] tmp_shape;
|
||||
}
|
||||
else {
|
||||
fp = fopen(fname.c_str(),"wb");
|
||||
std::vector<char> header = create_npy_header(data,shape,ndims);
|
||||
fwrite(&header[0],sizeof(char),header.size(),fp);
|
||||
}
|
||||
|
||||
unsigned int nels = 1;
|
||||
for(int i = 0;i < ndims;i++) nels *= shape[i];
|
||||
|
||||
fwrite(data,sizeof(T),nels,fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
template<typename T> void npz_save(std::string zipname, std::string fname, const T* data, const unsigned int* shape, const unsigned int ndims, std::string mode = "w")
|
||||
{
|
||||
//first, append a .npy to the fname
|
||||
fname += ".npy";
|
||||
|
||||
//now, on with the show
|
||||
FILE* fp = NULL;
|
||||
unsigned short nrecs = 0;
|
||||
unsigned int global_header_offset = 0;
|
||||
std::vector<char> global_header;
|
||||
|
||||
if(mode == "a") fp = fopen(zipname.c_str(),"r+b");
|
||||
|
||||
if(fp) {
|
||||
//zip file exists. we need to add a new npy file to it.
|
||||
//first read the footer. this gives us the offset and size of the global header
|
||||
//then read and store the global header.
|
||||
//below, we will write the the new data at the start of the global header then append the global header and footer below it
|
||||
unsigned int global_header_size;
|
||||
parse_zip_footer(fp,nrecs,global_header_size,global_header_offset);
|
||||
fseek(fp,global_header_offset,SEEK_SET);
|
||||
global_header.resize(global_header_size);
|
||||
size_t res = fread(&global_header[0],sizeof(char),global_header_size,fp);
|
||||
if(res != global_header_size){
|
||||
throw std::runtime_error("npz_save: header read error while adding to existing zip");
|
||||
}
|
||||
fseek(fp,global_header_offset,SEEK_SET);
|
||||
}
|
||||
else {
|
||||
fp = fopen(zipname.c_str(),"wb");
|
||||
}
|
||||
|
||||
std::vector<char> npy_header = create_npy_header(data,shape,ndims);
|
||||
|
||||
unsigned long nels = 1;
|
||||
for (int m=0; m<ndims; m++ ) nels *= shape[m];
|
||||
int nbytes = nels*sizeof(T) + npy_header.size();
|
||||
|
||||
//get the CRC of the data to be added
|
||||
unsigned int crc = crc32(0L,(unsigned char*)&npy_header[0],npy_header.size());
|
||||
crc = crc32(crc,(unsigned char*)data,nels*sizeof(T));
|
||||
|
||||
//build the local header
|
||||
std::vector<char> local_header;
|
||||
local_header += "PK"; //first part of sig
|
||||
local_header += (unsigned short) 0x0403; //second part of sig
|
||||
local_header += (unsigned short) 20; //min version to extract
|
||||
local_header += (unsigned short) 0; //general purpose bit flag
|
||||
local_header += (unsigned short) 0; //compression method
|
||||
local_header += (unsigned short) 0; //file last mod time
|
||||
local_header += (unsigned short) 0; //file last mod date
|
||||
local_header += (unsigned int) crc; //crc
|
||||
local_header += (unsigned int) nbytes; //compressed size
|
||||
local_header += (unsigned int) nbytes; //uncompressed size
|
||||
local_header += (unsigned short) fname.size(); //fname length
|
||||
local_header += (unsigned short) 0; //extra field length
|
||||
local_header += fname;
|
||||
|
||||
//build global header
|
||||
global_header += "PK"; //first part of sig
|
||||
global_header += (unsigned short) 0x0201; //second part of sig
|
||||
global_header += (unsigned short) 20; //version made by
|
||||
global_header.insert(global_header.end(),local_header.begin()+4,local_header.begin()+30);
|
||||
global_header += (unsigned short) 0; //file comment length
|
||||
global_header += (unsigned short) 0; //disk number where file starts
|
||||
global_header += (unsigned short) 0; //internal file attributes
|
||||
global_header += (unsigned int) 0; //external file attributes
|
||||
global_header += (unsigned int) global_header_offset; //relative offset of local file header, since it begins where the global header used to begin
|
||||
global_header += fname;
|
||||
|
||||
//build footer
|
||||
std::vector<char> footer;
|
||||
footer += "PK"; //first part of sig
|
||||
footer += (unsigned short) 0x0605; //second part of sig
|
||||
footer += (unsigned short) 0; //number of this disk
|
||||
footer += (unsigned short) 0; //disk where footer starts
|
||||
footer += (unsigned short) (nrecs+1); //number of records on this disk
|
||||
footer += (unsigned short) (nrecs+1); //total number of records
|
||||
footer += (unsigned int) global_header.size(); //nbytes of global headers
|
||||
footer += (unsigned int) (global_header_offset + nbytes + local_header.size()); //offset of start of global headers, since global header now starts after newly written array
|
||||
footer += (unsigned short) 0; //zip file comment length
|
||||
|
||||
//write everything
|
||||
fwrite(&local_header[0],sizeof(char),local_header.size(),fp);
|
||||
fwrite(&npy_header[0],sizeof(char),npy_header.size(),fp);
|
||||
fwrite(data,sizeof(T),nels,fp);
|
||||
fwrite(&global_header[0],sizeof(char),global_header.size(),fp);
|
||||
fwrite(&footer[0],sizeof(char),footer.size(),fp);
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
template<typename T> std::vector<char> create_npy_header(const T* data, const unsigned int* shape, const unsigned int ndims) {
|
||||
|
||||
std::vector<char> dict;
|
||||
dict += "{'descr': '";
|
||||
dict += BigEndianTest();
|
||||
dict += map_type(typeid(T));
|
||||
dict += tostring(sizeof(T));
|
||||
dict += "', 'fortran_order': False, 'shape': (";
|
||||
dict += tostring(shape[0]);
|
||||
for(int i = 1;i < ndims;i++) {
|
||||
dict += ", ";
|
||||
dict += tostring(shape[i]);
|
||||
}
|
||||
if(ndims == 1) dict += ",";
|
||||
dict += "), }";
|
||||
//pad with spaces so that preamble+dict is modulo 16 bytes. preamble is 10 bytes. dict needs to end with \n
|
||||
int remainder = 16 - (10 + dict.size()) % 16;
|
||||
dict.insert(dict.end(),remainder,' ');
|
||||
dict.back() = '\n';
|
||||
|
||||
std::vector<char> header;
|
||||
header += (char) 0x93;
|
||||
header += "NUMPY";
|
||||
header += (char) 0x01; //major version of numpy format
|
||||
header += (char) 0x00; //minor version of numpy format
|
||||
header += (unsigned short) dict.size();
|
||||
header.insert(header.end(),dict.begin(),dict.end());
|
||||
|
||||
return header;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -20,43 +20,46 @@ static std::string getTestFile(TStr filename)
|
||||
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
||||
}
|
||||
|
||||
TEST(ReadCaffePrototxt_gtsrb, Accuracy)
|
||||
TEST(ReadCaffe_GTSRB, Accuracy)
|
||||
{
|
||||
Ptr<Importer> importer = createCaffeImporter(getTestFile("gtsrb.prototxt"), getTestFile("gtsrb_iter_36000.caffemodel"));
|
||||
Net net;
|
||||
importer->populateNet(net);
|
||||
|
||||
Mat img = imread(getTestFile("sign_50.ppm"));
|
||||
CV_Assert(!img.empty());
|
||||
img.convertTo(img, CV_32F, 1.0 / 255);
|
||||
resize(img, img, cv::Size(48, 48));
|
||||
Blob imgBlob(img);
|
||||
|
||||
net.setBlob("input", imgBlob);
|
||||
net.forward();
|
||||
|
||||
Blob res = net.getBlob("loss");
|
||||
for (int n = 0; n < 1; n++)
|
||||
{
|
||||
Mat slice = Mat(res.channels() * res.rows(), res.cols(), CV_32F, res.ptr<float>(n));
|
||||
Ptr<Importer> importer = createCaffeImporter(getTestFile("gtsrb.prototxt"), "");
|
||||
importer->populateNet(net);
|
||||
}
|
||||
|
||||
double maxv;
|
||||
std::vector<int> maxIdx;
|
||||
minMaxLoc(slice, NULL, &maxv, NULL, &maxIdx);
|
||||
// Mat img = imread(getTestFile("sign_50.ppm"));
|
||||
// CV_Assert(!img.empty());
|
||||
// img.convertTo(img, CV_32F, 1.0 / 255);
|
||||
// resize(img, img, cv::Size(48, 48));
|
||||
// Blob imgBlob(img);
|
||||
|
||||
int bestClass = maxIdx[0];
|
||||
std::cout << "Best class: #" << bestClass << std::endl;
|
||||
// net.setBlob("input", imgBlob);
|
||||
// net.forward();
|
||||
|
||||
//imwrite(getTestFile("vis.png"), slice*(255.0 / maxv));
|
||||
// Blob res = net.getBlob("loss");
|
||||
// for (int n = 0; n < 1; n++)
|
||||
// {
|
||||
// Mat slice = Mat(res.channels() * res.rows(), res.cols(), CV_32F, res.ptr<float>(n));
|
||||
|
||||
// double maxv;
|
||||
// std::vector<int> maxIdx;
|
||||
// minMaxLoc(slice, NULL, &maxv, NULL, &maxIdx);
|
||||
|
||||
// int bestClass = maxIdx[0];
|
||||
// std::cout << "Best class: #" << bestClass << std::endl;
|
||||
|
||||
// //imwrite(getTestFile("vis.png"), slice*(255.0 / maxv));
|
||||
// }
|
||||
}
|
||||
|
||||
TEST(ReadCaffe_GoogleNet, Accuracy)
|
||||
{
|
||||
Net net;
|
||||
{
|
||||
Ptr<Importer> importer = createCaffeImporter(getTestFile("googlenet_deploy.prototxt"), "");
|
||||
importer->populateNet(net);
|
||||
}
|
||||
}
|
||||
|
||||
//TEST(ReadCaffePrototxt_GoogleNet, Accuracy)
|
||||
//{
|
||||
// Ptr<Importer> importer = createCaffeImporter(getOpenCVExtraDir() + "/dnn/googlenet_deploy.prototxt", "");
|
||||
// Net net;
|
||||
// importer->populateNet(net);
|
||||
// net.forward();
|
||||
//}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
90
modules/dnn/test/test_layers.cpp
Normal file
90
modules/dnn/test/test_layers.cpp
Normal file
@@ -0,0 +1,90 @@
|
||||
#include "test_precomp.hpp"
|
||||
#include <iostream>
|
||||
#include "cnpy.h"
|
||||
|
||||
namespace cvtest
|
||||
{
|
||||
|
||||
using namespace std;
|
||||
using namespace testing;
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
static std::string getOpenCVExtraDir()
|
||||
{
|
||||
return cvtest::TS::ptr()->get_data_path();
|
||||
}
|
||||
|
||||
template<typename TStr>
|
||||
static std::string getTestFile(TStr filename)
|
||||
{
|
||||
return (getOpenCVExtraDir() + "/dnn/layers/") + filename;
|
||||
}
|
||||
|
||||
template<typename T, int n>
|
||||
bool isEqual(const cv::Vec<T, n> &l, const cv::Vec<T, n> &r)
|
||||
{
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
if (l[i] != r[i])
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
Blob loadNpyBlob(String name)
|
||||
{
|
||||
cnpy::NpyArray npyBlob = cnpy::npy_load(getTestFile(name));
|
||||
|
||||
Blob blob;
|
||||
blob.fill((int)npyBlob.shape.size(), (int*)&npyBlob.shape[0], CV_32F, npyBlob.data);
|
||||
|
||||
npyBlob.destruct();
|
||||
return blob;
|
||||
}
|
||||
|
||||
static void testLayer(String proto, String caffemodel = String())
|
||||
{
|
||||
Blob inp = loadNpyBlob("blob.npy");
|
||||
Blob ref = loadNpyBlob(proto + ".caffe.npy");
|
||||
|
||||
Net net;
|
||||
{
|
||||
Ptr<Importer> importer = createCaffeImporter(getTestFile(proto), caffemodel);
|
||||
ASSERT_TRUE(importer != NULL);
|
||||
importer->populateNet(net);
|
||||
}
|
||||
|
||||
net.setBlob("input", inp);
|
||||
net.forward();
|
||||
Blob out = net.getBlob("output");
|
||||
|
||||
EXPECT_TRUE(isEqual(ref.shape(), out.shape()));
|
||||
|
||||
Mat &mRef = ref.getMatRef();
|
||||
Mat &mOut = out.getMatRef();
|
||||
size_t N = ref.total();
|
||||
|
||||
double normL1 = cvtest::norm(mRef, mOut, NORM_L1)/N;
|
||||
EXPECT_LE(normL1, 0.0001);
|
||||
|
||||
double normInf = cvtest::norm(mRef, mOut, NORM_INF);
|
||||
EXPECT_LE(normInf, 0.0001);
|
||||
}
|
||||
|
||||
TEST(Layer_Softmax_Test, Accuracy)
|
||||
{
|
||||
testLayer("softmax.prototxt");
|
||||
}
|
||||
|
||||
TEST(Layer_LRN_spatial_Test, Accuracy)
|
||||
{
|
||||
testLayer("lrn_spatial.prototxt");
|
||||
}
|
||||
|
||||
TEST(Layer_LRN_channels_Test, Accuracy)
|
||||
{
|
||||
testLayer("lrn_channels.prototxt");
|
||||
}
|
||||
|
||||
}
|
||||
BIN
modules/dnn/testdata/dnn/layers/blob.npy
vendored
Normal file
BIN
modules/dnn/testdata/dnn/layers/blob.npy
vendored
Normal file
Binary file not shown.
21
modules/dnn/testdata/dnn/layers/lrn_channels.prototxt
vendored
Normal file
21
modules/dnn/testdata/dnn/layers/lrn_channels.prototxt
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
name: "test_LRN_channels"
|
||||
input: "input"
|
||||
|
||||
input_dim: 2
|
||||
input_dim: 6
|
||||
input_dim: 75
|
||||
input_dim: 113
|
||||
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
lrn_param {
|
||||
norm_region: ACROSS_CHANNELS;
|
||||
local_size: 5
|
||||
alpha: 1.1
|
||||
beta: 0.75
|
||||
}
|
||||
|
||||
bottom: "input"
|
||||
top: "output"
|
||||
}
|
||||
BIN
modules/dnn/testdata/dnn/layers/lrn_channels.prototxt.caffe.npy
vendored
Normal file
BIN
modules/dnn/testdata/dnn/layers/lrn_channels.prototxt.caffe.npy
vendored
Normal file
Binary file not shown.
21
modules/dnn/testdata/dnn/layers/lrn_spatial.prototxt
vendored
Normal file
21
modules/dnn/testdata/dnn/layers/lrn_spatial.prototxt
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
name: "test_LRN_spatial"
|
||||
input: "input"
|
||||
|
||||
input_dim: 2
|
||||
input_dim: 6
|
||||
input_dim: 75
|
||||
input_dim: 113
|
||||
|
||||
layer {
|
||||
name: "norm1"
|
||||
type: "LRN"
|
||||
lrn_param {
|
||||
norm_region: WITHIN_CHANNEL;
|
||||
local_size: 5
|
||||
alpha: 0.9
|
||||
beta: 0.75
|
||||
}
|
||||
|
||||
bottom: "input"
|
||||
top: "output"
|
||||
}
|
||||
BIN
modules/dnn/testdata/dnn/layers/lrn_spatial.prototxt.caffe.npy
vendored
Normal file
BIN
modules/dnn/testdata/dnn/layers/lrn_spatial.prototxt.caffe.npy
vendored
Normal file
Binary file not shown.
15
modules/dnn/testdata/dnn/layers/softmax.prototxt
vendored
Normal file
15
modules/dnn/testdata/dnn/layers/softmax.prototxt
vendored
Normal file
@@ -0,0 +1,15 @@
|
||||
name: "test_Softmax"
|
||||
input: "input"
|
||||
|
||||
input_dim: 2
|
||||
input_dim: 5
|
||||
input_dim: 75
|
||||
input_dim: 113
|
||||
|
||||
layer {
|
||||
name: "Softmax"
|
||||
type: "Softmax"
|
||||
|
||||
bottom: "input"
|
||||
top: "output"
|
||||
}
|
||||
BIN
modules/dnn/testdata/dnn/layers/softmax.prototxt.caffe.npy
vendored
Normal file
BIN
modules/dnn/testdata/dnn/layers/softmax.prototxt.caffe.npy
vendored
Normal file
Binary file not shown.
Reference in New Issue
Block a user