mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-24 11:33:26 +08:00
Added MO-TLD NN Classifier optimization on GPU
This commit is contained in:
@@ -19,7 +19,12 @@ namespace cv
|
||||
trackers.push_back(tracker);
|
||||
|
||||
//Assign a random color to target
|
||||
colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256));
|
||||
if (targetNum == 1)
|
||||
colors.push_back(Scalar(0, 0, 255));
|
||||
else
|
||||
colors.push_back(Scalar(rand() % 256, rand() % 256, rand() % 256));
|
||||
|
||||
|
||||
|
||||
//Target counter
|
||||
targetNum++;
|
||||
@@ -75,17 +80,14 @@ namespace cv
|
||||
|
||||
bool DETECT_FLG = false;
|
||||
|
||||
//printf("%d\n", targetNum);
|
||||
//Detect all
|
||||
for (int k = 0; k < targetNum; k++)
|
||||
tmpCandidates[k] = boundingBoxes[k];
|
||||
//if (ocl::haveOpenCL())
|
||||
if (ocl::haveOpenCL())
|
||||
ocl_detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers);
|
||||
else
|
||||
detect_all(imageForDetector, image_blurred, tmpCandidates, detectorResults, detect_flgs, trackers);
|
||||
//else
|
||||
//DETECT_FLG = tldModel->detector->detect(imageForDetector, image_blurred, tmpCandid, detectorResults, tldModel->getMinSize());
|
||||
|
||||
//printf("BOOOLZZZ %d\n", detect_flgs[0]);
|
||||
//printf("BOOOLXXX %d\n", detect_flgs[1]);
|
||||
for (int k = 0; k < targetNum; k++)
|
||||
{
|
||||
//TLD Tracker data extraction
|
||||
@@ -95,7 +97,6 @@ namespace cv
|
||||
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
|
||||
Ptr<tld::Data> data = tracker->data;
|
||||
|
||||
///////
|
||||
data->frameNum++;
|
||||
|
||||
for (int i = 0; i < 2; i++)
|
||||
@@ -125,14 +126,9 @@ namespace cv
|
||||
trackerNeedsReInit[k] = false;
|
||||
}
|
||||
}
|
||||
//printf("CanditateRes Size: %d \n", candidatesRes[k].size());
|
||||
|
||||
std::vector<double>::iterator it = std::max_element(candidatesRes[k].begin(), candidatesRes[k].end());
|
||||
|
||||
//dfprintf((stdout, "scale = %f\n", log(1.0 * boundingBox.width / (data->getMinSize()).width) / log(SCALE_STEP)));
|
||||
//for( int i = 0; i < (int)candidatesRes.size(); i++ )
|
||||
//dprintf(("\tcandidatesRes[%d] = %f\n", i, candidatesRes[i]));
|
||||
//data->printme();
|
||||
//tldModel->printme(stdout);
|
||||
|
||||
if (it == candidatesRes[k].end())
|
||||
{
|
||||
@@ -445,9 +441,7 @@ namespace cv
|
||||
//printf("%d %f %f\n", k, srValue, scValue);
|
||||
}
|
||||
|
||||
//e2 = getTickCount();
|
||||
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
||||
//printf("NN: %d\t%f\n", patches.size(), t);
|
||||
|
||||
|
||||
if (maxSc < 0)
|
||||
detect_flgs[k] = false;
|
||||
@@ -458,5 +452,262 @@ namespace cv
|
||||
detect_flgs[k] = true;
|
||||
}
|
||||
}
|
||||
//e2 = getTickCount();
|
||||
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
||||
//printf("NN: %d\t%f\n", patches.size(), t);
|
||||
}
|
||||
}
|
||||
|
||||
void ocl_detect_all(const Mat& img, const Mat& imgBlurred, std::vector<Rect2d>& res, std::vector < std::vector < tld::TLDDetector::LabeledPatch >> &patches, std::vector<bool> &detect_flgs,
|
||||
std::vector<Ptr<Tracker>> &trackers)
|
||||
{
|
||||
//TLD Tracker data extraction
|
||||
Tracker* trackerPtr = trackers[0];
|
||||
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
|
||||
//TLD Model Extraction
|
||||
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
|
||||
Size initSize = tldModel->getMinSize();
|
||||
|
||||
for (int k = 0; k < trackers.size(); k++)
|
||||
patches[k].clear();
|
||||
|
||||
Mat_<uchar> standardPatch(tld::STANDARD_PATCH_SIZE, tld::STANDARD_PATCH_SIZE);
|
||||
Mat tmp;
|
||||
int dx = initSize.width / 10, dy = initSize.height / 10;
|
||||
Size2d size = img.size();
|
||||
double scale = 1.0;
|
||||
int npos = 0, nneg = 0;
|
||||
double maxSc = -5.0;
|
||||
Rect2d maxScRect;
|
||||
int scaleID;
|
||||
std::vector <Mat> resized_imgs, blurred_imgs;
|
||||
|
||||
std::vector <std::vector <Point>> varBuffer(trackers.size()), ensBuffer(trackers.size());
|
||||
std::vector <std::vector <int>> varScaleIDs(trackers.size()), ensScaleIDs(trackers.size());
|
||||
|
||||
std::vector <Point> tmpP;
|
||||
std::vector <int> tmpI;
|
||||
|
||||
//int64 e1, e2;
|
||||
//double t;
|
||||
//e1 = getTickCount();
|
||||
|
||||
//Detection part
|
||||
//Generate windows and filter by variance
|
||||
scaleID = 0;
|
||||
resized_imgs.push_back(img);
|
||||
blurred_imgs.push_back(imgBlurred);
|
||||
do
|
||||
{
|
||||
Mat_<double> intImgP, intImgP2;
|
||||
tld::TLDDetector::computeIntegralImages(resized_imgs[scaleID], intImgP, intImgP2);
|
||||
for (int i = 0, imax = cvFloor((0.0 + resized_imgs[scaleID].cols - initSize.width) / dx); i < imax; i++)
|
||||
{
|
||||
for (int j = 0, jmax = cvFloor((0.0 + resized_imgs[scaleID].rows - initSize.height) / dy); j < jmax; j++)
|
||||
{
|
||||
//Optimized variance calculation
|
||||
int x = dx * i,
|
||||
y = dy * j,
|
||||
width = initSize.width,
|
||||
height = initSize.height;
|
||||
double p = 0, p2 = 0;
|
||||
double A, B, C, D;
|
||||
|
||||
A = intImgP(y, x);
|
||||
B = intImgP(y, x + width);
|
||||
C = intImgP(y + height, x);
|
||||
D = intImgP(y + height, x + width);
|
||||
p = (A + D - B - C) / (width * height);
|
||||
|
||||
A = intImgP2(y, x);
|
||||
B = intImgP2(y, x + width);
|
||||
C = intImgP2(y + height, x);
|
||||
D = intImgP2(y + height, x + width);
|
||||
p2 = (A + D - B - C) / (width * height);
|
||||
double windowVar = p2 - p * p;
|
||||
|
||||
//Loop for on all objects
|
||||
for (int k = 0; k < trackers.size(); k++)
|
||||
{
|
||||
//TLD Tracker data extraction
|
||||
Tracker* trackerPtr = trackers[k];
|
||||
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
|
||||
//TLD Model Extraction
|
||||
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
|
||||
|
||||
//Optimized variance calculation
|
||||
bool varPass = (windowVar > tld::VARIANCE_THRESHOLD * *tldModel->detector->originalVariancePtr);
|
||||
|
||||
if (!varPass)
|
||||
continue;
|
||||
varBuffer[k].push_back(Point(dx * i, dy * j));
|
||||
varScaleIDs[k].push_back(scaleID);
|
||||
|
||||
//Debug display candidates after Variance Filter
|
||||
double curScale = pow(tld::SCALE_STEP, scaleID);
|
||||
debugStack[0].push_back(Rect2d(dx * i* curScale, dy * j*curScale, tldModel->getMinSize().width*curScale, tldModel->getMinSize().height*curScale));
|
||||
}
|
||||
}
|
||||
}
|
||||
scaleID++;
|
||||
size.width /= tld::SCALE_STEP;
|
||||
size.height /= tld::SCALE_STEP;
|
||||
scale *= tld::SCALE_STEP;
|
||||
resize(img, tmp, size, 0, 0, tld::DOWNSCALE_MODE);
|
||||
resized_imgs.push_back(tmp);
|
||||
GaussianBlur(resized_imgs[scaleID], tmp, tld::GaussBlurKernelSize, 0.0f);
|
||||
blurred_imgs.push_back(tmp);
|
||||
} while (size.width >= initSize.width && size.height >= initSize.height);
|
||||
|
||||
|
||||
|
||||
//e2 = getTickCount();
|
||||
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
||||
//printf("Variance: %d\t%f\n", varBuffer.size(), t);
|
||||
|
||||
//printf("OrigVar 1: %f\n", *tldModel->detector->originalVariancePtr);
|
||||
|
||||
//Encsemble classification
|
||||
//e1 = getTickCount();
|
||||
for (int k = 0; k < trackers.size(); k++)
|
||||
{
|
||||
//TLD Tracker data extraction
|
||||
Tracker* trackerPtr = trackers[k];
|
||||
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
|
||||
//TLD Model Extraction
|
||||
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
|
||||
|
||||
|
||||
for (int i = 0; i < (int)varBuffer[k].size(); i++)
|
||||
{
|
||||
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
|
||||
|
||||
double ensRes = 0;
|
||||
uchar* data = &blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x);
|
||||
for (int x = 0; x < (int)tldModel->detector->classifiers.size(); x++)
|
||||
{
|
||||
int position = 0;
|
||||
for (int n = 0; n < (int)tldModel->detector->classifiers[x].measurements.size(); n++)
|
||||
{
|
||||
position = position << 1;
|
||||
if (data[tldModel->detector->classifiers[x].offset[n].x] < data[tldModel->detector->classifiers[x].offset[n].y])
|
||||
position++;
|
||||
}
|
||||
double posNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].x;
|
||||
double negNum = (double)tldModel->detector->classifiers[x].posAndNeg[position].y;
|
||||
if (posNum == 0.0 && negNum == 0.0)
|
||||
continue;
|
||||
else
|
||||
ensRes += posNum / (posNum + negNum);
|
||||
}
|
||||
ensRes /= tldModel->detector->classifiers.size();
|
||||
ensRes = tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x));
|
||||
|
||||
if (ensRes <= tld::ENSEMBLE_THRESHOLD)
|
||||
continue;
|
||||
ensBuffer[k].push_back(varBuffer[k][i]);
|
||||
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
|
||||
}
|
||||
/*
|
||||
for (int i = 0; i < (int)varBuffer[k].size(); i++)
|
||||
{
|
||||
tldModel->detector->prepareClassifiers(static_cast<int> (blurred_imgs[varScaleIDs[k][i]].step[0]));
|
||||
if (tldModel->detector->ensembleClassifierNum(&blurred_imgs[varScaleIDs[k][i]].at<uchar>(varBuffer[k][i].y, varBuffer[k][i].x)) <= tld::ENSEMBLE_THRESHOLD)
|
||||
continue;
|
||||
ensBuffer[k].push_back(varBuffer[k][i]);
|
||||
ensScaleIDs[k].push_back(varScaleIDs[k][i]);
|
||||
}
|
||||
*/
|
||||
}
|
||||
//e2 = getTickCount();
|
||||
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
||||
|
||||
//printf("varBuffer 1: %d\n", varBuffer[0].size());
|
||||
//printf("ensBuffer 1: %d\n", ensBuffer[0].size());
|
||||
|
||||
//printf("varBuffer 2: %d\n", varBuffer[1].size());
|
||||
//printf("ensBuffer 2: %d\n", ensBuffer[1].size());
|
||||
|
||||
//NN classification
|
||||
//e1 = getTickCount();
|
||||
for (int k = 0; k < trackers.size(); k++)
|
||||
{
|
||||
//TLD Tracker data extraction
|
||||
Tracker* trackerPtr = trackers[k];
|
||||
cv::tld::TrackerTLDImpl* tracker = static_cast<tld::TrackerTLDImpl*>(trackerPtr);
|
||||
//TLD Model Extraction
|
||||
tld::TrackerTLDModel* tldModel = ((tld::TrackerTLDModel*)static_cast<TrackerModel*>(tracker->model));
|
||||
//Size InitSize = tldModel->getMinSize();
|
||||
npos = 0;
|
||||
nneg = 0;
|
||||
maxSc = -5.0;
|
||||
|
||||
//Prepare batch of patches
|
||||
int numOfPatches = (int)ensBuffer[k].size();
|
||||
Mat_<uchar> stdPatches(numOfPatches, 225);
|
||||
double *resultSr = new double[numOfPatches];
|
||||
double *resultSc = new double[numOfPatches];
|
||||
|
||||
uchar *patchesData = stdPatches.data;
|
||||
for (int i = 0; i < (int)ensBuffer.size(); i++)
|
||||
{
|
||||
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch);
|
||||
uchar *stdPatchData = standardPatch.data;
|
||||
for (int j = 0; j < 225; j++)
|
||||
patchesData[225 * i + j] = stdPatchData[j];
|
||||
}
|
||||
//Calculate Sr and Sc batches
|
||||
tldModel->detector->ocl_batchSrSc(stdPatches, resultSr, resultSc, numOfPatches);
|
||||
|
||||
for (int i = 0; i < (int)ensBuffer[k].size(); i++)
|
||||
{
|
||||
tld::TLDDetector::LabeledPatch labPatch;
|
||||
standardPatch.data = &stdPatches.data[225 * i];
|
||||
double curScale = pow(tld::SCALE_STEP, ensScaleIDs[k][i]);
|
||||
labPatch.rect = Rect2d(ensBuffer[k][i].x*curScale, ensBuffer[k][i].y*curScale, initSize.width * curScale, initSize.height * curScale);
|
||||
tld::resample(resized_imgs[ensScaleIDs[k][i]], Rect2d(ensBuffer[k][i], initSize), standardPatch);
|
||||
|
||||
double srValue, scValue;
|
||||
srValue = resultSr[i];
|
||||
|
||||
////To fix: Check the paper, probably this cause wrong learning
|
||||
//
|
||||
labPatch.isObject = srValue > tld::THETA_NN;
|
||||
labPatch.shouldBeIntegrated = abs(srValue - tld::THETA_NN) < 0.1;
|
||||
patches[k].push_back(labPatch);
|
||||
//
|
||||
|
||||
if (!labPatch.isObject)
|
||||
{
|
||||
nneg++;
|
||||
continue;
|
||||
}
|
||||
else
|
||||
{
|
||||
npos++;
|
||||
}
|
||||
scValue = resultSc[i];
|
||||
if (scValue > maxSc)
|
||||
{
|
||||
maxSc = scValue;
|
||||
maxScRect = labPatch.rect;
|
||||
}
|
||||
//printf("%d %f %f\n", k, srValue, scValue);
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (maxSc < 0)
|
||||
detect_flgs[k] = false;
|
||||
else
|
||||
{
|
||||
res[k] = maxScRect;
|
||||
//printf("%f %f %f %f\n", maxScRect.x, maxScRect.y, maxScRect.width, maxScRect.height);
|
||||
detect_flgs[k] = true;
|
||||
}
|
||||
}
|
||||
//e2 = getTickCount();
|
||||
//t = (e2 - e1) / getTickFrequency()*1000.0;
|
||||
//printf("NN: %d\t%f\n", patches.size(), t);
|
||||
}
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user