mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 02:16:34 +08:00
Merge pull request #379 from sbokov:sparseMatchInterpolationSquashed
This commit is contained in:
@@ -1,2 +1,2 @@
|
||||
set(the_description "Optical Flow Algorithms")
|
||||
ocv_define_module(optflow opencv_core opencv_imgproc opencv_video opencv_highgui WRAP python)
|
||||
ocv_define_module(optflow opencv_core opencv_imgproc opencv_video opencv_highgui opencv_ximgproc WRAP python)
|
||||
|
@@ -109,7 +109,30 @@ CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray
|
||||
double sigma_dist, double sigma_color, int postprocess_window,
|
||||
double sigma_dist_fix, double sigma_color_fix, double occ_thr,
|
||||
int upscale_averaging_radius, double upscale_sigma_dist,
|
||||
double upscale_sigma_color, double speed_up_thr );
|
||||
double upscale_sigma_color, double speed_up_thr );
|
||||
|
||||
/** @brief Fast dense optical flow based on PyrLK sparse matches interpolation.
|
||||
|
||||
@param from first 8-bit 3-channel or 1-channel image.
|
||||
@param to second 8-bit 3-channel or 1-channel image of the same size as from
|
||||
@param flow computed flow image that has the same size as from and CV_32FC2 type
|
||||
@param grid_step stride used in sparse match computation. Lower values usually
|
||||
result in higher quality but slow down the algorithm.
|
||||
@param k number of nearest-neighbor matches considered, when fitting a locally affine
|
||||
model. Lower values can make the algorithm noticeably faster at the cost of
|
||||
some quality degradation.
|
||||
@param sigma parameter defining how fast the weights decrease in the locally-weighted affine
|
||||
fitting. Higher values can help preserve fine details, lower values can help to get rid
|
||||
of the noise in the output flow.
|
||||
@param use_post_proc defines whether the ximgproc::fastGlobalSmootherFilter() is used
|
||||
for post-processing after interpolation
|
||||
@param fgs_lambda see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
|
||||
@param fgs_sigma see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowSparseToDense ( InputArray from, InputArray to, OutputArray flow,
|
||||
int grid_step = 8, int k = 128, float sigma = 0.05f,
|
||||
bool use_post_proc = true, float fgs_lambda = 500.0f,
|
||||
float fgs_sigma = 1.5f );
|
||||
|
||||
/** @brief Read a .flo file
|
||||
|
||||
@@ -165,6 +188,9 @@ CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SimpleFlow();
|
||||
//! Additional interface to the Farneback's algorithm - calcOpticalFlowFarneback()
|
||||
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_Farneback();
|
||||
|
||||
//! Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense()
|
||||
CV_EXPORTS_W Ptr<DenseOpticalFlow> createOptFlow_SparseToDense();
|
||||
|
||||
//! @}
|
||||
|
||||
} //optflow
|
||||
|
@@ -10,7 +10,7 @@ using namespace optflow;
|
||||
const String keys = "{help h usage ? | | print this message }"
|
||||
"{@image1 | | image1 }"
|
||||
"{@image2 | | image2 }"
|
||||
"{@algorithm | | [farneback, simpleflow, tvl1 or deepflow] }"
|
||||
"{@algorithm | | [farneback, simpleflow, tvl1, deepflow or sparsetodenseflow] }"
|
||||
"{@groundtruth | | path to the .flo file (optional), Middlebury format }"
|
||||
"{m measure |endpoint| error measure - [endpoint or angular] }"
|
||||
"{r region |all | region to compute stats about [all, discontinuities, untextured] }"
|
||||
@@ -249,6 +249,8 @@ int main( int argc, char** argv )
|
||||
algorithm = createOptFlow_DualTVL1();
|
||||
else if ( method == "deepflow" )
|
||||
algorithm = createOptFlow_DeepFlow();
|
||||
else if ( method == "sparsetodenseflow" )
|
||||
algorithm = createOptFlow_SparseToDense();
|
||||
else
|
||||
{
|
||||
printf("Wrong method!\n");
|
||||
|
@@ -177,5 +177,42 @@ Ptr<DenseOpticalFlow> createOptFlow_Farneback()
|
||||
{
|
||||
return makePtr<OpticalFlowFarneback>();
|
||||
}
|
||||
|
||||
class OpticalFlowSparseToDense : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
OpticalFlowSparseToDense(int _grid_step, int _k, float _sigma, bool _use_post_proc, float _fgs_lambda, float _fgs_sigma);
|
||||
void calc(InputArray I0, InputArray I1, InputOutputArray flow);
|
||||
void collectGarbage();
|
||||
protected:
|
||||
int grid_step;
|
||||
int k;
|
||||
float sigma;
|
||||
bool use_post_proc;
|
||||
float fgs_lambda;
|
||||
float fgs_sigma;
|
||||
};
|
||||
|
||||
OpticalFlowSparseToDense::OpticalFlowSparseToDense(int _grid_step, int _k, float _sigma, bool _use_post_proc, float _fgs_lambda, float _fgs_sigma)
|
||||
{
|
||||
grid_step = _grid_step;
|
||||
k = _k;
|
||||
sigma = _sigma;
|
||||
use_post_proc = _use_post_proc;
|
||||
fgs_lambda = _fgs_lambda;
|
||||
fgs_sigma = _fgs_sigma;
|
||||
}
|
||||
|
||||
void OpticalFlowSparseToDense::calc(InputArray I0, InputArray I1, InputOutputArray flow)
|
||||
{
|
||||
calcOpticalFlowSparseToDense(I0,I1,flow,grid_step,k,sigma,use_post_proc,fgs_lambda,fgs_sigma);
|
||||
}
|
||||
|
||||
void OpticalFlowSparseToDense::collectGarbage() {}
|
||||
|
||||
Ptr<DenseOpticalFlow> createOptFlow_SparseToDense()
|
||||
{
|
||||
return makePtr<OpticalFlowSparseToDense>(8,128,0.05f,true,500.0f,1.5f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
112
modules/optflow/src/sparsetodenseflow.cpp
Normal file
112
modules/optflow/src/sparsetodenseflow.cpp
Normal file
@@ -0,0 +1,112 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"
|
||||
using namespace std;
|
||||
|
||||
namespace cv {
|
||||
namespace optflow {
|
||||
|
||||
CV_EXPORTS_W void calcOpticalFlowSparseToDense(InputArray from, InputArray to, OutputArray flow,
|
||||
int grid_step, int k,
|
||||
float sigma, bool use_post_proc,
|
||||
float fgs_lambda, float fgs_sigma)
|
||||
{
|
||||
CV_Assert( grid_step>1 && k>3 && sigma>0.0001f && fgs_lambda>1.0f && fgs_sigma>0.01f );
|
||||
CV_Assert( !from.empty() && from.depth() == CV_8U && (from.channels() == 3 || from.channels() == 1) );
|
||||
CV_Assert( !to .empty() && to .depth() == CV_8U && (to .channels() == 3 || to .channels() == 1) );
|
||||
CV_Assert( from.sameSize(to) );
|
||||
|
||||
Mat prev = from.getMat();
|
||||
Mat cur = to.getMat();
|
||||
Mat prev_grayscale, cur_grayscale;
|
||||
|
||||
while( (prev.cols/grid_step)*(prev.rows/grid_step) > SHRT_MAX ) //ensure that the number matches is not too big
|
||||
grid_step*=2;
|
||||
|
||||
if(prev.channels()==3)
|
||||
{
|
||||
cvtColor(prev,prev_grayscale,COLOR_BGR2GRAY);
|
||||
cvtColor(cur, cur_grayscale, COLOR_BGR2GRAY);
|
||||
}
|
||||
else
|
||||
{
|
||||
prev.copyTo(prev_grayscale);
|
||||
cur .copyTo(cur_grayscale);
|
||||
}
|
||||
|
||||
vector<Point2f> points;
|
||||
vector<Point2f> dst_points;
|
||||
vector<unsigned char> status;
|
||||
vector<float> err;
|
||||
vector<Point2f> points_filtered, dst_points_filtered;
|
||||
|
||||
for(int i=0;i<prev.rows;i+=grid_step)
|
||||
for(int j=0;j<prev.cols;j+=grid_step)
|
||||
points.push_back(Point2f((float)j,(float)i));
|
||||
|
||||
calcOpticalFlowPyrLK(prev_grayscale,cur_grayscale,points,dst_points,status,err,Size(21,21));
|
||||
|
||||
for(unsigned int i=0;i<points.size();i++)
|
||||
{
|
||||
if(status[i]!=0)
|
||||
{
|
||||
points_filtered.push_back(points[i]);
|
||||
dst_points_filtered.push_back(dst_points[i]);
|
||||
}
|
||||
}
|
||||
|
||||
flow.create(from.size(),CV_32FC2);
|
||||
Mat dense_flow = flow.getMat();
|
||||
|
||||
Ptr<ximgproc::EdgeAwareInterpolator> gd = ximgproc::createEdgeAwareInterpolator();
|
||||
gd->setK(k);
|
||||
gd->setSigma(sigma);
|
||||
gd->setUsePostProcessing(use_post_proc);
|
||||
gd->setFGSLambda(fgs_lambda);
|
||||
gd->setFGSSigma (fgs_sigma);
|
||||
gd->interpolate(prev,points_filtered,cur,dst_points_filtered,dense_flow);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
146
modules/optflow/test/test_sparsetodenseflow.cpp
Normal file
146
modules/optflow/test/test_sparsetodenseflow.cpp
Normal file
@@ -0,0 +1,146 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
/* ///////////////////// sparsetodenseflow_test ///////////////////////// */
|
||||
|
||||
class CV_SparseToDenseFlowTest : public cvtest::BaseTest
|
||||
{
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
static bool isFlowCorrect(float u) {
|
||||
return !cvIsNaN(u) && (fabs(u) < 1e9);
|
||||
}
|
||||
|
||||
static float calc_rmse(Mat flow1, Mat flow2) {
|
||||
float sum = 0;
|
||||
int counter = 0;
|
||||
const int rows = flow1.rows;
|
||||
const int cols = flow1.cols;
|
||||
|
||||
for (int y = 0; y < rows; ++y) {
|
||||
for (int x = 0; x < cols; ++x) {
|
||||
Vec2f flow1_at_point = flow1.at<Vec2f>(y, x);
|
||||
Vec2f flow2_at_point = flow2.at<Vec2f>(y, x);
|
||||
|
||||
float u1 = flow1_at_point[0];
|
||||
float v1 = flow1_at_point[1];
|
||||
float u2 = flow2_at_point[0];
|
||||
float v2 = flow2_at_point[1];
|
||||
|
||||
if (isFlowCorrect(u1) && isFlowCorrect(u2) && isFlowCorrect(v1) && isFlowCorrect(v2)) {
|
||||
sum += (u1-u2)*(u1-u2) + (v1-v2)*(v1-v2);
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return (float)sqrt(sum / (1e-9 + counter));
|
||||
}
|
||||
|
||||
void CV_SparseToDenseFlowTest::run(int) {
|
||||
const float MAX_RMSE = 0.6f;
|
||||
const string frame1_path = ts->get_data_path() + "optflow/RubberWhale1.png";
|
||||
const string frame2_path = ts->get_data_path() + "optflow/RubberWhale2.png";
|
||||
const string gt_flow_path = ts->get_data_path() + "optflow/RubberWhale.flo";
|
||||
|
||||
Mat frame1 = imread(frame1_path);
|
||||
Mat frame2 = imread(frame2_path);
|
||||
|
||||
if (frame1.empty()) {
|
||||
ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
if (frame2.empty()) {
|
||||
ts->printf(cvtest::TS::LOG, "could not read image %s\n", frame2_path.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
if (frame1.rows != frame2.rows && frame1.cols != frame2.cols) {
|
||||
ts->printf(cvtest::TS::LOG, "images should be of equal sizes (%s and %s)",
|
||||
frame1_path.c_str(), frame2_path.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
if (frame1.type() != 16 || frame2.type() != 16) {
|
||||
ts->printf(cvtest::TS::LOG, "images should be of equal type CV_8UC3 (%s and %s)",
|
||||
frame1_path.c_str(), frame2_path.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat flow_gt = optflow::readOpticalFlow(gt_flow_path);
|
||||
if(flow_gt.empty()) {
|
||||
ts->printf(cvtest::TS::LOG, "error while reading flow data from file %s",
|
||||
gt_flow_path.c_str());
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
Mat flow;
|
||||
optflow::calcOpticalFlowSparseToDense(frame1, frame2, flow);
|
||||
|
||||
float rmse = calc_rmse(flow_gt, flow);
|
||||
|
||||
ts->printf(cvtest::TS::LOG, "Optical flow estimation RMSE for SparseToDenseFlow algorithm : %lf\n",
|
||||
rmse);
|
||||
|
||||
if (rmse > MAX_RMSE) {
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"Too big rmse error : %lf ( >= %lf )\n", rmse, MAX_RMSE);
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST(Video_OpticalFlowSparseToDenseFlow, accuracy) { CV_SparseToDenseFlowTest test; test.safe_run(); }
|
Reference in New Issue
Block a user