mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-23 00:49:38 +08:00
Utilize CV_UNUSED macro
This commit is contained in:
@@ -293,7 +293,7 @@ public:
|
||||
* @param sensitivity: strenght of the sigmoide
|
||||
* @param maxOutputValue: the maximum output value
|
||||
*/
|
||||
inline void normalizeGrayOutputCentredSigmoide(const type meanValue=(type)0.0, const type sensitivity=(type)2.0, const type maxOutputValue=(type)255.0) { (void)maxOutputValue; normalizeGrayOutputCentredSigmoide(meanValue, sensitivity, 255.0, this->Buffer(), this->Buffer(), this->getNBpixels()); }
|
||||
inline void normalizeGrayOutputCentredSigmoide(const type meanValue=(type)0.0, const type sensitivity=(type)2.0, const type maxOutputValue=(type)255.0) { CV_UNUSED(maxOutputValue); normalizeGrayOutputCentredSigmoide(meanValue, sensitivity, 255.0, this->Buffer(), this->Buffer(), this->getNBpixels()); }
|
||||
|
||||
/**
|
||||
* sigmoide image normalization function (saturates min and max values), in this function, the sigmoide is centered on low values (high saturation of the medium and high values
|
||||
|
@@ -50,7 +50,7 @@ the use of this software, even if advised of the possibility of such damage.
|
||||
#include <utility>
|
||||
#include <cfloat>
|
||||
|
||||
#include "opencv2/core/cvstd.hpp"
|
||||
#include "opencv2/core/base.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace face {
|
||||
@@ -66,7 +66,7 @@ public:
|
||||
/** @brief Interface method called by face recognizer before results processing
|
||||
@param size total size of prediction evaluation that recognizer could perform
|
||||
*/
|
||||
virtual void init(size_t size) { (void)size; }
|
||||
virtual void init(size_t size) { CV_UNUSED(size); }
|
||||
|
||||
/** @brief Interface method called by face recognizer for each result
|
||||
@param label current prediction label
|
||||
|
@@ -48,8 +48,8 @@ void FaceRecognizer::setLabelInfo(int label, const String &strInfo)
|
||||
|
||||
void FaceRecognizer::update(InputArrayOfArrays src, InputArray labels)
|
||||
{
|
||||
(void)src;
|
||||
(void)labels;
|
||||
CV_UNUSED(src);
|
||||
CV_UNUSED(labels);
|
||||
String error_msg = format("This FaceRecognizer does not support updating, you have to use FaceRecognizer::train to update it.");
|
||||
CV_Error(Error::StsNotImplemented, error_msg);
|
||||
}
|
||||
|
@@ -292,7 +292,7 @@ void getAllDCTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescri
|
||||
const Size sz = imgCh[0].size();
|
||||
descr.reserve( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) );
|
||||
|
||||
(void)mp; // Fix unused parameter warning in case OpenCL is not available
|
||||
CV_UNUSED(mp); // Fix unused parameter warning in case OpenCL is not available
|
||||
CV_OCL_RUN( mp.useOpenCL, ocl_getAllDCTDescriptorsForImage( imgCh, descr ) )
|
||||
|
||||
descr.resize( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) );
|
||||
|
@@ -79,7 +79,7 @@ namespace cv
|
||||
}
|
||||
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
||||
{
|
||||
(void)w2;
|
||||
CV_UNUSED(w2);
|
||||
for (int i = 0; i < stop; i++)
|
||||
{
|
||||
if (image[i][rrWidth + jj] > image[i][rWidth + j])
|
||||
@@ -114,7 +114,7 @@ namespace cv
|
||||
}
|
||||
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
||||
{
|
||||
(void)w2;
|
||||
CV_UNUSED(w2);
|
||||
for(int i = 0; i < imageStop; i++)
|
||||
{
|
||||
if (image[i][rrWidth + jj] > image[i][rWidth + j] - t)
|
||||
@@ -154,8 +154,8 @@ namespace cv
|
||||
}
|
||||
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
||||
{
|
||||
(void)j;
|
||||
(void)rWidth;
|
||||
CV_UNUSED(j);
|
||||
CV_UNUSED(rWidth);
|
||||
for(int i = 0; i < imageStop; i++)
|
||||
{
|
||||
if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))])
|
||||
@@ -181,7 +181,7 @@ namespace cv
|
||||
}
|
||||
void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
|
||||
{
|
||||
(void)w2;
|
||||
CV_UNUSED(w2);
|
||||
for(int i = 0; i < imageStop; i++)
|
||||
{
|
||||
////compare a pixel with the center from the kernel
|
||||
|
@@ -263,11 +263,11 @@ bool SinusoidalPatternProfilometry_Impl::decode(const std::vector< std::vector<M
|
||||
InputArrayOfArrays blackImages,
|
||||
InputArrayOfArrays whiteImages, int flags ) const
|
||||
{
|
||||
(void) patternImages;
|
||||
(void) disparityMap;
|
||||
(void) blackImages;
|
||||
(void) whiteImages;
|
||||
(void) flags;
|
||||
CV_UNUSED(patternImages);
|
||||
CV_UNUSED(disparityMap);
|
||||
CV_UNUSED(blackImages);
|
||||
CV_UNUSED(whiteImages);
|
||||
CV_UNUSED(flags);
|
||||
return true;
|
||||
}
|
||||
// Most of the steps described in the paper to get the wrapped phase map take place here
|
||||
@@ -310,7 +310,7 @@ void SinusoidalPatternProfilometry_Impl::computePhaseMap( InputArrayOfArrays pat
|
||||
{
|
||||
Mat &shadowMask_ = *(Mat*) shadowMask.getObj();
|
||||
//Mat &fundamental_ = *(Mat*) fundamental.getObj();
|
||||
(void) fundamental;
|
||||
CV_UNUSED(fundamental);
|
||||
Mat dmt;
|
||||
int nbrOfPatterns = static_cast<int>(pattern_.size());
|
||||
std::vector<Mat> filteredPatterns(nbrOfPatterns);
|
||||
@@ -425,9 +425,9 @@ void SinusoidalPatternProfilometry_Impl::findProCamMatches( InputArray projUnwra
|
||||
InputArray camUnwrappedPhaseMap,
|
||||
OutputArrayOfArrays matches )
|
||||
{
|
||||
(void) projUnwrappedPhaseMap;
|
||||
(void) camUnwrappedPhaseMap;
|
||||
(void) matches;
|
||||
CV_UNUSED(projUnwrappedPhaseMap);
|
||||
CV_UNUSED(camUnwrappedPhaseMap);
|
||||
CV_UNUSED(matches);
|
||||
}
|
||||
|
||||
void SinusoidalPatternProfilometry_Impl::computeDft( InputArray patternImage,
|
||||
@@ -896,8 +896,8 @@ void SinusoidalPatternProfilometry_Impl::convertToAbsolutePhaseMap( InputArrayOf
|
||||
InputArray fundamentalMatrix )
|
||||
{
|
||||
std::vector<Mat> &camPatterns_ = *(std::vector<Mat>*) camPatterns.getObj();
|
||||
(void) unwrappedCamPhaseMap;
|
||||
(void) unwrappedProjPhaseMap;
|
||||
CV_UNUSED(unwrappedCamPhaseMap);
|
||||
CV_UNUSED(unwrappedProjPhaseMap);
|
||||
|
||||
Mat &fundamental = *(Mat*) fundamentalMatrix.getObj();
|
||||
|
||||
|
@@ -262,7 +262,7 @@ public:
|
||||
#ifdef HAVE_TESSERACT
|
||||
tess.SetVariable("tessedit_char_whitelist", char_whitelist.c_str());
|
||||
#else
|
||||
(void)char_whitelist;
|
||||
CV_UNUSED(char_whitelist);
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
Reference in New Issue
Block a user