mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-21 14:41:58 +08:00
optimization
This commit is contained in:
@@ -1204,7 +1204,11 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
|
||||
- "GRAY" -- Use grayscale values as the feature
|
||||
- "CN" -- Color-names feature
|
||||
*/
|
||||
enum MODE {GRAY, CN, CN2};
|
||||
enum MODE {
|
||||
GRAY = (1u << 0),
|
||||
CN = (1u << 1),
|
||||
CUSTOM = (1u<<2)
|
||||
};
|
||||
|
||||
struct CV_EXPORTS Params
|
||||
{
|
||||
@@ -1234,9 +1238,12 @@ class CV_EXPORTS_W TrackerKCF : public Tracker
|
||||
bool compress_feature; //!< activate the pca method to compress the features
|
||||
int max_patch_size; //!< threshold for the ROI size
|
||||
int compressed_size; //!< feature size after compression
|
||||
MODE descriptor; //!< descriptor type
|
||||
unsigned int desc_pca; //!< compressed descriptors of TrackerKCF::MODE
|
||||
unsigned int desc_npca; //!< non-compressed descriptors of TrackerKCF::MODE
|
||||
};
|
||||
|
||||
virtual void setFeatureExtractor(void (*)(const Mat, const Rect, Mat&), bool pca_func = false);
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters KCF parameters TrackerKCF::Params
|
||||
*/
|
||||
@@ -1355,8 +1362,8 @@ Rect2d CV_EXPORTS_W selectROI(Mat img, bool fromCenter = true);
|
||||
Rect2d CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
|
||||
void CV_EXPORTS_W selectROI(const std::string& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
|
||||
|
||||
//! @}
|
||||
|
||||
} /* namespace cv */
|
||||
|
||||
//! @}
|
||||
|
||||
#endif
|
||||
|
@@ -73,6 +73,7 @@ namespace cv{
|
||||
TrackerKCFImpl( const TrackerKCF::Params ¶meters = TrackerKCF::Params() );
|
||||
void read( const FileNode& /*fn*/ );
|
||||
void write( FileStorage& /*fs*/ ) const;
|
||||
void setFeatureExtractor(void (*f)(const Mat, const Rect, Mat&), bool pca_func = false);
|
||||
|
||||
protected:
|
||||
/*
|
||||
@@ -86,19 +87,22 @@ namespace cv{
|
||||
/*
|
||||
* KCF functions and vars
|
||||
*/
|
||||
void createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const;
|
||||
void inline fft2(const Mat src, std::vector<Mat> & dest) const;
|
||||
void createHanningWindow(OutputArray dest, const cv::Size winSize, const int type) const;
|
||||
void inline fft2(const Mat src, std::vector<Mat> & dest, std::vector<Mat> & layers_data) const;
|
||||
void inline fft2(const Mat src, Mat & dest) const;
|
||||
void inline ifft2(const Mat src, Mat & dest) const;
|
||||
void inline pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB=false) const;
|
||||
void inline sumChannels(std::vector<Mat> src, Mat & dest) const;
|
||||
void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx,double pca_rate, int compressed_sz) const;
|
||||
void inline compress(const Mat _proj_mtx, const Mat src, Mat & dest) const;
|
||||
bool getSubWindow(const Mat img, const Rect roi, Mat& patch) const;
|
||||
void extractCN(Mat _patch, Mat & cnFeatures) const;
|
||||
void denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const;
|
||||
void calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const;
|
||||
void calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const;
|
||||
void inline updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & proj_matrix,double pca_rate, int compressed_sz,
|
||||
std::vector<Mat> & layers_pca,std::vector<Scalar> & average, Mat pca_data, Mat new_cov, Mat w, Mat u, Mat v) const;
|
||||
void inline compress(const Mat proj_matrix, const Mat src, Mat & dest, Mat & data, Mat & compressed) const;
|
||||
bool getSubWindow(const Mat img, const Rect roi, Mat& feat, Mat& patch, TrackerKCF::MODE desc = GRAY) const;
|
||||
bool getSubWindow(const Mat img, const Rect roi, Mat& feat, void (*f)(const Mat, const Rect, Mat& )) const;
|
||||
void extractCN(Mat patch_data, Mat & cnFeatures) const;
|
||||
void denseGaussKernel(const double sigma, const Mat , const Mat y_data, Mat & k_data,
|
||||
std::vector<Mat> & layers_data,std::vector<Mat> & xf_data,std::vector<Mat> & yf_data, std::vector<Mat> xyf_v, Mat xy, Mat xyf ) const;
|
||||
void calcResponse(const Mat alphaf_data, const Mat kf_data, Mat & response_data, Mat & spec_data) const;
|
||||
void calcResponse(const Mat alphaf_data, const Mat alphaf_den_data, const Mat kf_data, Mat & response_data, Mat & spec_data, Mat & spec2_data) const;
|
||||
|
||||
void shiftRows(Mat& mat) const;
|
||||
void shiftRows(Mat& mat, int n) const;
|
||||
@@ -108,17 +112,46 @@ namespace cv{
|
||||
double output_sigma;
|
||||
Rect2d roi;
|
||||
Mat hann; //hann window filter
|
||||
Mat hann_cn; //10 dimensional hann-window filter for CN features,
|
||||
|
||||
Mat y,yf; // training response and its FFT
|
||||
Mat x,xf; // observation and its FFT
|
||||
Mat x; // observation and its FFT
|
||||
Mat k,kf; // dense gaussian kernel and its FFT
|
||||
Mat kf_lambda; // kf+lambda
|
||||
Mat new_alphaf, alphaf; // training coefficients
|
||||
Mat new_alphaf_den, alphaf_den; // for splitted training coefficients
|
||||
Mat z, new_z; // model
|
||||
Mat z; // model
|
||||
Mat response; // detection result
|
||||
Mat old_cov_mtx, proj_mtx; // for feature compression
|
||||
|
||||
// pre-defined Mat variables for optimization of private functions
|
||||
Mat spec, spec2;
|
||||
std::vector<Mat> layers;
|
||||
std::vector<Mat> vxf,vyf,vxyf;
|
||||
Mat xy_data,xyf_data;
|
||||
Mat data_temp, compress_data;
|
||||
std::vector<Mat> layers_pca_data;
|
||||
std::vector<Scalar> average_data;
|
||||
Mat img_Patch;
|
||||
|
||||
// storage for the extracted features, KRLS model, KRLS compressed model
|
||||
Mat X[2],Z[2],Zc[2];
|
||||
|
||||
// storage of the extracted features
|
||||
std::vector<Mat> features_pca;
|
||||
std::vector<Mat> features_npca;
|
||||
std::vector<MODE> descriptors_pca;
|
||||
std::vector<MODE> descriptors_npca;
|
||||
|
||||
// optimization variables for updateProjectionMatrix
|
||||
Mat data_pca, new_covar,w_data,u_data,vt_data;
|
||||
|
||||
// custom feature extractor
|
||||
bool use_custom_extractor_pca;
|
||||
bool use_custom_extractor_npca;
|
||||
std::vector<void(*)(const Mat img, const Rect roi, Mat& output)> extractor_pca;
|
||||
std::vector<void(*)(const Mat img, const Rect roi, Mat& output)> extractor_npca;
|
||||
|
||||
bool resizeImage; // resize the image whenever needed and the patch size is large
|
||||
|
||||
int frame;
|
||||
@@ -135,8 +168,9 @@ namespace cv{
|
||||
{
|
||||
isInit = false;
|
||||
resizeImage = false;
|
||||
use_custom_extractor_pca = false;
|
||||
use_custom_extractor_npca = false;
|
||||
|
||||
CV_Assert(params.descriptor == GRAY || params.descriptor == CN /*|| params.descriptor == CN2*/);
|
||||
}
|
||||
|
||||
void TrackerKCFImpl::read( const cv::FileNode& fn ){
|
||||
@@ -179,10 +213,10 @@ namespace cv{
|
||||
|
||||
// initialize the hann window filter
|
||||
createHanningWindow(hann, roi.size(), CV_64F);
|
||||
if(params.descriptor==CN){
|
||||
Mat layers[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann};
|
||||
merge(layers, 10, hann);
|
||||
}
|
||||
|
||||
// hann window filter for CN feature
|
||||
Mat _layer[] = {hann, hann, hann, hann, hann, hann, hann, hann, hann, hann};
|
||||
merge(_layer, 10, hann_cn);
|
||||
|
||||
// create gaussian response
|
||||
y=Mat::zeros((int)roi.height,(int)roi.width,CV_64F);
|
||||
@@ -200,6 +234,28 @@ namespace cv{
|
||||
|
||||
model=Ptr<TrackerKCFModel>(new TrackerKCFModel(params));
|
||||
|
||||
// record the non-compressed descriptors
|
||||
if((params.desc_npca & GRAY) == GRAY)descriptors_npca.push_back(GRAY);
|
||||
if((params.desc_npca & CN) == CN)descriptors_npca.push_back(CN);
|
||||
if(use_custom_extractor_npca)descriptors_npca.push_back(CUSTOM);
|
||||
features_npca.resize(descriptors_npca.size());
|
||||
|
||||
// record the compressed descriptors
|
||||
if((params.desc_pca & GRAY) == GRAY)descriptors_pca.push_back(GRAY);
|
||||
if((params.desc_pca & CN) == CN)descriptors_pca.push_back(CN);
|
||||
if(use_custom_extractor_pca)descriptors_pca.push_back(CUSTOM);
|
||||
features_pca.resize(descriptors_pca.size());
|
||||
|
||||
// accept only the available descriptor modes
|
||||
CV_Assert(
|
||||
(params.desc_pca & GRAY) == GRAY
|
||||
|| (params.desc_npca & GRAY) == GRAY
|
||||
|| (params.desc_pca & CN) == CN
|
||||
|| (params.desc_npca & CN) == CN
|
||||
|| use_custom_extractor_pca
|
||||
|| use_custom_extractor_npca
|
||||
);
|
||||
|
||||
// TODO: return true only if roi inside the image
|
||||
return true;
|
||||
}
|
||||
@@ -210,33 +266,71 @@ namespace cv{
|
||||
bool TrackerKCFImpl::updateImpl( const Mat& image, Rect2d& boundingBox ){
|
||||
double minVal, maxVal; // min-max response
|
||||
Point minLoc,maxLoc; // min-max location
|
||||
Mat zc;
|
||||
|
||||
Mat img=image.clone();
|
||||
// check the channels of the input image, grayscale is preferred
|
||||
CV_Assert(image.channels() == 1 || image.channels() == 3);
|
||||
CV_Assert(img.channels() == 1 || img.channels() == 3);
|
||||
|
||||
// resize the image whenever needed
|
||||
if(resizeImage)resize(img,img,Size(img.cols/2,img.rows/2));
|
||||
|
||||
// extract and pre-process the patch
|
||||
if(!getSubWindow(img,roi, x))return false;
|
||||
|
||||
// detection part
|
||||
if(frame>0){
|
||||
|
||||
// extract and pre-process the patch
|
||||
// get non compressed descriptors
|
||||
for(unsigned i=0;i<descriptors_npca.size()-extractor_npca.size();i++){
|
||||
if(!getSubWindow(img,roi, features_npca[i], img_Patch, descriptors_npca[i]))return false;
|
||||
}
|
||||
//get non-compressed custom descriptors
|
||||
for(unsigned i=0,j=(unsigned)(descriptors_npca.size()-extractor_npca.size());i<extractor_npca.size();i++,j++){
|
||||
if(!getSubWindow(img,roi, features_npca[j], extractor_npca[i]))return false;
|
||||
}
|
||||
if(features_npca.size()>0)merge(features_npca,X[1]);
|
||||
|
||||
// get compressed descriptors
|
||||
for(unsigned i=0;i<descriptors_pca.size()-extractor_pca.size();i++){
|
||||
if(!getSubWindow(img,roi, features_pca[i], img_Patch, descriptors_pca[i]))return false;
|
||||
}
|
||||
//get compressed custom descriptors
|
||||
for(unsigned i=0,j=(unsigned)(descriptors_pca.size()-extractor_pca.size());i<extractor_pca.size();i++,j++){
|
||||
if(!getSubWindow(img,roi, features_pca[j], extractor_pca[i]))return false;
|
||||
}
|
||||
if(features_pca.size()>0)merge(features_pca,X[0]);
|
||||
|
||||
//compress the features and the KRSL model
|
||||
if(params.desc_pca !=0){
|
||||
compress(proj_mtx,X[0],X[0],data_temp,compress_data);
|
||||
compress(proj_mtx,Z[0],Zc[0],data_temp,compress_data);
|
||||
}
|
||||
|
||||
// copy the compressed KRLS model
|
||||
Zc[1] = Z[1];
|
||||
|
||||
// merge all features
|
||||
if(features_npca.size()==0){
|
||||
x = X[0];
|
||||
z = Zc[0];
|
||||
}else if(features_pca.size()==0){
|
||||
x = X[1];
|
||||
z = Z[1];
|
||||
}else{
|
||||
merge(X,2,x);
|
||||
merge(Zc,2,z);
|
||||
}
|
||||
|
||||
//compute the gaussian kernel
|
||||
if(params.compress_feature){
|
||||
compress(proj_mtx,x,x);
|
||||
compress(proj_mtx,z,zc);
|
||||
denseGaussKernel(params.sigma,x,zc,k);
|
||||
}else
|
||||
denseGaussKernel(params.sigma,x,z,k);
|
||||
denseGaussKernel(params.sigma,x,z,k,layers,vxf,vyf,vxyf,xy_data,xyf_data);
|
||||
|
||||
// compute the fourier transform of the kernel
|
||||
fft2(k,kf);
|
||||
if(frame==1)spec2=Mat_<Vec2d >(kf.rows, kf.cols);
|
||||
|
||||
// calculate filter response
|
||||
if(params.split_coeff)
|
||||
calcResponse(alphaf,alphaf_den,k,response);
|
||||
calcResponse(alphaf,alphaf_den,kf,response, spec, spec2);
|
||||
else
|
||||
calcResponse(alphaf,k,response);
|
||||
calcResponse(alphaf,kf,response, spec);
|
||||
|
||||
// extract the maximum response
|
||||
minMaxLoc( response, &minVal, &maxVal, &minLoc, &maxLoc );
|
||||
@@ -249,43 +343,84 @@ namespace cv{
|
||||
}
|
||||
|
||||
// extract the patch for learning purpose
|
||||
if(!getSubWindow(img,roi, x))return false;
|
||||
// get non compressed descriptors
|
||||
for(unsigned i=0;i<descriptors_npca.size()-extractor_npca.size();i++){
|
||||
if(!getSubWindow(img,roi, features_npca[i], img_Patch, descriptors_npca[i]))return false;
|
||||
}
|
||||
//get non-compressed custom descriptors
|
||||
for(unsigned i=0,j=(unsigned)(descriptors_npca.size()-extractor_npca.size());i<extractor_npca.size();i++,j++){
|
||||
if(!getSubWindow(img,roi, features_npca[j], extractor_npca[i]))return false;
|
||||
}
|
||||
if(features_npca.size()>0)merge(features_npca,X[1]);
|
||||
|
||||
// get compressed descriptors
|
||||
for(unsigned i=0;i<descriptors_pca.size()-extractor_pca.size();i++){
|
||||
if(!getSubWindow(img,roi, features_pca[i], img_Patch, descriptors_pca[i]))return false;
|
||||
}
|
||||
//get compressed custom descriptors
|
||||
for(unsigned i=0,j=(unsigned)(descriptors_pca.size()-extractor_pca.size());i<extractor_pca.size();i++,j++){
|
||||
if(!getSubWindow(img,roi, features_pca[j], extractor_pca[i]))return false;
|
||||
}
|
||||
if(features_pca.size()>0)merge(features_pca,X[0]);
|
||||
|
||||
//update the training data
|
||||
new_z=x.clone();
|
||||
if(frame==0)
|
||||
z=x.clone();
|
||||
else
|
||||
z=(1.0-params.interp_factor)*z+params.interp_factor*new_z;
|
||||
if(frame==0){
|
||||
Z[0] = X[0].clone();
|
||||
Z[1] = X[1].clone();
|
||||
}else{
|
||||
Z[0]=(1.0-params.interp_factor)*Z[0]+params.interp_factor*X[0];
|
||||
Z[1]=(1.0-params.interp_factor)*Z[1]+params.interp_factor*X[1];
|
||||
}
|
||||
|
||||
if(params.desc_pca !=0 || use_custom_extractor_pca){
|
||||
// initialize the vector of Mat variables
|
||||
if(frame==0){
|
||||
layers_pca_data.resize(Z[0].channels());
|
||||
average_data.resize(Z[0].channels());
|
||||
}
|
||||
|
||||
if(params.compress_feature){
|
||||
// feature compression
|
||||
updateProjectionMatrix(z,old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size);
|
||||
compress(proj_mtx,x,x);
|
||||
updateProjectionMatrix(Z[0],old_cov_mtx,proj_mtx,params.pca_learning_rate,params.compressed_size,layers_pca_data,average_data,data_pca, new_covar,w_data,u_data,vt_data);
|
||||
compress(proj_mtx,X[0],X[0],data_temp,compress_data);
|
||||
}
|
||||
|
||||
// merge all features
|
||||
if(features_npca.size()==0)
|
||||
x = X[0];
|
||||
else if(features_pca.size()==0)
|
||||
x = X[1];
|
||||
else
|
||||
merge(X,2,x);
|
||||
|
||||
// initialize some required Mat variables
|
||||
if(frame==0){
|
||||
layers.resize(x.channels());
|
||||
vxf.resize(x.channels());
|
||||
vyf.resize(x.channels());
|
||||
vxyf.resize(vyf.size());
|
||||
new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols);
|
||||
}
|
||||
|
||||
// Kernel Regularized Least-Squares, calculate alphas
|
||||
denseGaussKernel(params.sigma,x,x,k);
|
||||
denseGaussKernel(params.sigma,x,x,k,layers,vxf,vyf,vxyf,xy_data,xyf_data);
|
||||
|
||||
// compute the fourier transform of the kernel and add a small value
|
||||
fft2(k,kf);
|
||||
kf_lambda=kf+params.lambda;
|
||||
|
||||
/* TODO: optimize this element-wise division
|
||||
* new_alphaf=yf./kf
|
||||
* z=(a+bi)/(c+di)[(ac+bd)+i(bc-ad)]/(c^2+d^2)
|
||||
*/
|
||||
new_alphaf=Mat_<Vec2d >(yf.rows, yf.cols);
|
||||
std::complex<double> temp;
|
||||
|
||||
double den;
|
||||
if(params.split_coeff){
|
||||
mulSpectrums(yf,kf,new_alphaf,0);
|
||||
mulSpectrums(kf,kf_lambda,new_alphaf_den,0);
|
||||
}else{
|
||||
for(int i=0;i<yf.rows;i++){
|
||||
for(int j=0;j<yf.cols;j++){
|
||||
temp=std::complex<double>(yf.at<Vec2d>(i,j)[0],yf.at<Vec2d>(i,j)[1])/(std::complex<double>(kf_lambda.at<Vec2d>(i,j)[0],kf_lambda.at<Vec2d>(i,j)[1])/*+std::complex<double>(0.0000000001,0.0000000001)*/);
|
||||
new_alphaf.at<Vec2d >(i,j)[0]=temp.real();
|
||||
new_alphaf.at<Vec2d >(i,j)[1]=temp.imag();
|
||||
den = 1.0/(kf_lambda.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[0]+kf_lambda.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[1]);
|
||||
|
||||
new_alphaf.at<Vec2d>(i,j)[0]=
|
||||
(yf.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[0]+yf.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[1])*den;
|
||||
new_alphaf.at<Vec2d>(i,j)[1]=
|
||||
(yf.at<Vec2d>(i,j)[1]*kf_lambda.at<Vec2d>(i,j)[0]-yf.at<Vec2d>(i,j)[0]*kf_lambda.at<Vec2d>(i,j)[1])*den;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -311,11 +446,11 @@ namespace cv{
|
||||
/*
|
||||
* hann window filter
|
||||
*/
|
||||
void TrackerKCFImpl::createHanningWindow(OutputArray _dst, const cv::Size winSize, const int type) const {
|
||||
void TrackerKCFImpl::createHanningWindow(OutputArray dest, const cv::Size winSize, const int type) const {
|
||||
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
|
||||
|
||||
_dst.create(winSize, type);
|
||||
Mat dst = _dst.getMat();
|
||||
dest.create(winSize, type);
|
||||
Mat dst = dest.getMat();
|
||||
|
||||
int rows = dst.rows, cols = dst.cols;
|
||||
|
||||
@@ -350,27 +485,14 @@ namespace cv{
|
||||
* simplification of fourier transform function in opencv
|
||||
*/
|
||||
void inline TrackerKCFImpl::fft2(const Mat src, Mat & dest) const {
|
||||
std::vector<Mat> layers(src.channels());
|
||||
std::vector<Mat> outputs(src.channels());
|
||||
|
||||
split(src, layers);
|
||||
|
||||
for(int i=0;i<src.channels();i++){
|
||||
dft(layers[i],outputs[i],DFT_COMPLEX_OUTPUT);
|
||||
dft(src,dest,DFT_COMPLEX_OUTPUT);
|
||||
}
|
||||
|
||||
merge(outputs,dest);
|
||||
}
|
||||
|
||||
void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest) const {
|
||||
std::vector<Mat> layers(src.channels());
|
||||
dest.clear();
|
||||
dest.resize(src.channels());
|
||||
|
||||
split(src, layers);
|
||||
void inline TrackerKCFImpl::fft2(const Mat src, std::vector<Mat> & dest, std::vector<Mat> & layers_data) const {
|
||||
split(src, layers_data);
|
||||
|
||||
for(int i=0;i<src.channels();i++){
|
||||
dft(layers[i],dest[i],DFT_COMPLEX_OUTPUT);
|
||||
dft(layers_data[i],dest[i],DFT_COMPLEX_OUTPUT);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -385,9 +507,6 @@ namespace cv{
|
||||
* Point-wise multiplication of two Multichannel Mat data
|
||||
*/
|
||||
void inline TrackerKCFImpl::pixelWiseMult(const std::vector<Mat> src1, const std::vector<Mat> src2, std::vector<Mat> & dest, const int flags, const bool conjB) const {
|
||||
dest.clear();
|
||||
dest.resize(src1.size());
|
||||
|
||||
for(unsigned i=0;i<src1.size();i++){
|
||||
mulSpectrums(src1[i], src2[i], dest[i],flags,conjB);
|
||||
}
|
||||
@@ -406,55 +525,51 @@ namespace cv{
|
||||
/*
|
||||
* obtains the projection matrix using PCA
|
||||
*/
|
||||
void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & _proj_mtx, double pca_rate, int compressed_sz) const {
|
||||
void inline TrackerKCFImpl::updateProjectionMatrix(const Mat src, Mat & old_cov,Mat & proj_matrix, double pca_rate, int compressed_sz,
|
||||
std::vector<Mat> & layers_pca,std::vector<Scalar> & average, Mat pca_data, Mat new_cov, Mat w, Mat u, Mat vt) const {
|
||||
CV_Assert(compressed_sz<=src.channels());
|
||||
|
||||
// compute average
|
||||
std::vector<Mat> layers(src.channels());
|
||||
std::vector<Scalar> average(src.channels());
|
||||
split(src,layers);
|
||||
split(src,layers_pca);
|
||||
|
||||
for (int i=0;i<src.channels();i++){
|
||||
average[i]=mean(layers[i]);
|
||||
layers[i]-=average[i];
|
||||
average[i]=mean(layers_pca[i]);
|
||||
layers_pca[i]-=average[i];
|
||||
}
|
||||
|
||||
// calc covariance matrix
|
||||
Mat data,new_cov;
|
||||
merge(layers,data);
|
||||
data=data.reshape(1,src.rows*src.cols);
|
||||
merge(layers_pca,pca_data);
|
||||
pca_data=pca_data.reshape(1,src.rows*src.cols);
|
||||
|
||||
new_cov=1.0/(double)(src.rows*src.cols-1)*(data.t()*data);
|
||||
new_cov=1.0/(double)(src.rows*src.cols-1)*(pca_data.t()*pca_data);
|
||||
if(old_cov.rows==0)old_cov=new_cov.clone();
|
||||
|
||||
// calc PCA
|
||||
Mat w, u, vt;
|
||||
SVD::compute((1.0-pca_rate)*old_cov+pca_rate*new_cov, w, u, vt);
|
||||
|
||||
// extract the projection matrix
|
||||
_proj_mtx=u(Rect(0,0,compressed_sz,src.channels())).clone();
|
||||
Mat proj_vars=Mat::eye(compressed_sz,compressed_sz,_proj_mtx.type());
|
||||
proj_matrix=u(Rect(0,0,compressed_sz,src.channels())).clone();
|
||||
Mat proj_vars=Mat::eye(compressed_sz,compressed_sz,proj_matrix.type());
|
||||
for(int i=0;i<compressed_sz;i++){
|
||||
proj_vars.at<double>(i,i)=w.at<double>(i);
|
||||
}
|
||||
|
||||
// update the covariance matrix
|
||||
old_cov=(1.0-pca_rate)*old_cov+pca_rate*_proj_mtx*proj_vars*_proj_mtx.t();
|
||||
old_cov=(1.0-pca_rate)*old_cov+pca_rate*proj_matrix*proj_vars*proj_matrix.t();
|
||||
}
|
||||
|
||||
/*
|
||||
* compress the features
|
||||
*/
|
||||
void inline TrackerKCFImpl::compress(const Mat _proj_mtx, const Mat src, Mat & dest) const {
|
||||
Mat data=src.reshape(1,src.rows*src.cols);
|
||||
Mat compressed=data*_proj_mtx;
|
||||
dest=compressed.reshape(_proj_mtx.cols,src.rows).clone();
|
||||
void inline TrackerKCFImpl::compress(const Mat proj_matrix, const Mat src, Mat & dest, Mat & data, Mat & compressed) const {
|
||||
data=src.reshape(1,src.rows*src.cols);
|
||||
compressed=data*proj_matrix;
|
||||
dest=compressed.reshape(proj_matrix.cols,src.rows).clone();
|
||||
}
|
||||
|
||||
/*
|
||||
* obtain the patch and apply hann window filter to it
|
||||
*/
|
||||
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& patch) const {
|
||||
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& feat, Mat& patch, TrackerKCF::MODE desc) const {
|
||||
|
||||
Rect region=_roi;
|
||||
|
||||
@@ -486,77 +601,108 @@ namespace cv{
|
||||
if(patch.rows==0 || patch.cols==0)return false;
|
||||
|
||||
// extract the desired descriptors
|
||||
switch(params.descriptor){
|
||||
case GRAY:
|
||||
if(img.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY);
|
||||
patch.convertTo(patch,CV_64F);
|
||||
patch=patch/255.0-0.5; // normalize to range -0.5 .. 0.5
|
||||
break;
|
||||
switch(desc){
|
||||
case CN:
|
||||
CV_Assert(img.channels() == 3);
|
||||
extractCN(patch,patch);
|
||||
extractCN(patch,feat);
|
||||
feat=feat.mul(hann_cn); // hann window filter
|
||||
break;
|
||||
case CN2:
|
||||
if(patch.channels()>1)cvtColor(patch,patch, CV_BGR2GRAY);
|
||||
default: // GRAY
|
||||
if(img.channels()>1)
|
||||
cvtColor(patch,feat, CV_BGR2GRAY);
|
||||
else
|
||||
feat=patch;
|
||||
feat.convertTo(feat,CV_64F);
|
||||
feat=feat/255.0-0.5; // normalize to range -0.5 .. 0.5
|
||||
feat=feat.mul(hann); // hann window filter
|
||||
break;
|
||||
}
|
||||
|
||||
patch=patch.mul(hann); // hann window filter
|
||||
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* get feature using external function
|
||||
*/
|
||||
bool TrackerKCFImpl::getSubWindow(const Mat img, const Rect _roi, Mat& feat, void (*f)(const Mat, const Rect, Mat& )) const{
|
||||
|
||||
// return false if roi is outside the image
|
||||
if((_roi.x+_roi.width<0)
|
||||
||(_roi.y+_roi.height<0)
|
||||
||(_roi.x>=img.cols)
|
||||
||(_roi.y>=img.rows)
|
||||
)return false;
|
||||
|
||||
f(img, _roi, feat);
|
||||
|
||||
if(_roi.width != feat.cols || _roi.height != feat.rows){
|
||||
printf("error in customized function of features extractor!\n");
|
||||
printf("Rules: roi.width==feat.cols && roi.height = feat.rows \n");
|
||||
}
|
||||
|
||||
Mat hann_win;
|
||||
std::vector<Mat> _layers;
|
||||
|
||||
for(int i=0;i<feat.channels();i++)
|
||||
_layers.push_back(hann);
|
||||
|
||||
merge(_layers, hann_win);
|
||||
|
||||
feat=feat.mul(hann_win); // hann window filter
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Convert BGR to ColorNames
|
||||
*/
|
||||
void TrackerKCFImpl::extractCN(Mat _patch, Mat & cnFeatures) const {
|
||||
Vec3b & pixel = _patch.at<Vec3b>(0,0);
|
||||
void TrackerKCFImpl::extractCN(Mat patch_data, Mat & cnFeatures) const {
|
||||
Vec3b & pixel = patch_data.at<Vec3b>(0,0);
|
||||
unsigned index;
|
||||
|
||||
Mat temp = Mat::zeros(_patch.rows,_patch.cols,CV_64FC(10));
|
||||
if(cnFeatures.type() != CV_64FC(10))
|
||||
cnFeatures = Mat::zeros(patch_data.rows,patch_data.cols,CV_64FC(10));
|
||||
|
||||
for(int i=0;i<_patch.rows;i++){
|
||||
for(int j=0;j<_patch.cols;j++){
|
||||
pixel=_patch.at<Vec3b>(i,j);
|
||||
for(int i=0;i<patch_data.rows;i++){
|
||||
for(int j=0;j<patch_data.cols;j++){
|
||||
pixel=patch_data.at<Vec3b>(i,j);
|
||||
index=(unsigned)(floor(pixel[2]/8)+32*floor(pixel[1]/8)+32*32*floor(pixel[0]/8));
|
||||
|
||||
//copy the values
|
||||
for(int _k=0;_k<10;_k++){
|
||||
temp.at<Vec<double,10> >(i,j)[_k]=ColorNames[index][_k];
|
||||
cnFeatures.at<Vec<double,10> >(i,j)[_k]=ColorNames[index][_k];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cnFeatures=temp.clone();
|
||||
}
|
||||
|
||||
/*
|
||||
* dense gauss kernel function
|
||||
*/
|
||||
void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat _x, const Mat _y, Mat & _k) const {
|
||||
std::vector<Mat> _xf,_yf,xyf_v;
|
||||
Mat xy,xyf;
|
||||
void TrackerKCFImpl::denseGaussKernel(const double sigma, const Mat x_data, const Mat y_data, Mat & k_data,
|
||||
std::vector<Mat> & layers_data,std::vector<Mat> & xf_data,std::vector<Mat> & yf_data, std::vector<Mat> xyf_v, Mat xy, Mat xyf ) const {
|
||||
double normX, normY;
|
||||
|
||||
fft2(_x,_xf);
|
||||
fft2(_y,_yf);
|
||||
fft2(x_data,xf_data,layers_data);
|
||||
fft2(y_data,yf_data,layers_data);
|
||||
|
||||
normX=norm(_x);
|
||||
normX=norm(x_data);
|
||||
normX*=normX;
|
||||
normY=norm(_y);
|
||||
normY=norm(y_data);
|
||||
normY*=normY;
|
||||
|
||||
pixelWiseMult(_xf,_yf,xyf_v,0,true);
|
||||
pixelWiseMult(xf_data,yf_data,xyf_v,0,true);
|
||||
sumChannels(xyf_v,xyf);
|
||||
ifft2(xyf,xyf);
|
||||
|
||||
if(params.wrap_kernel){
|
||||
shiftRows(xyf, _x.rows/2);
|
||||
shiftCols(xyf, _x.cols/2);
|
||||
shiftRows(xyf, x_data.rows/2);
|
||||
shiftCols(xyf, x_data.cols/2);
|
||||
}
|
||||
|
||||
//(xx + yy - 2 * xy) / numel(x)
|
||||
xy=(normX+normY-2*xyf)/(_x.rows*_x.cols*_x.channels());
|
||||
xy=(normX+normY-2*xyf)/(x_data.rows*x_data.cols*x_data.channels());
|
||||
|
||||
// TODO: check wether we really need thresholding or not
|
||||
//threshold(xy,xy,0.0,0.0,THRESH_TOZERO);//max(0, (xx + yy - 2 * xy) / numel(x))
|
||||
@@ -568,7 +714,7 @@ namespace cv{
|
||||
|
||||
double sig=-1.0/(sigma*sigma);
|
||||
xy=sig*xy;
|
||||
exp(xy,_k);
|
||||
exp(xy,k_data);
|
||||
|
||||
}
|
||||
|
||||
@@ -626,36 +772,42 @@ namespace cv{
|
||||
/*
|
||||
* calculate the detection response
|
||||
*/
|
||||
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _k, Mat & _response) const {
|
||||
void TrackerKCFImpl::calcResponse(const Mat alphaf_data, const Mat kf_data, Mat & response_data, Mat & spec_data) const {
|
||||
//alpha f--> 2channels ; k --> 1 channel;
|
||||
Mat _kf;
|
||||
fft2(_k,_kf);
|
||||
Mat spec;
|
||||
mulSpectrums(_alphaf,_kf,spec,0,false);
|
||||
ifft2(spec,_response);
|
||||
mulSpectrums(alphaf_data,kf_data,spec_data,0,false);
|
||||
ifft2(spec_data,response_data);
|
||||
}
|
||||
|
||||
/*
|
||||
* calculate the detection response for splitted form
|
||||
*/
|
||||
void TrackerKCFImpl::calcResponse(const Mat _alphaf, const Mat _alphaf_den, const Mat _k, Mat & _response) const {
|
||||
Mat _kf;
|
||||
fft2(_k,_kf);
|
||||
Mat spec;
|
||||
Mat spec2=Mat_<Vec2d >(_k.rows, _k.cols);
|
||||
std::complex<double> temp;
|
||||
void TrackerKCFImpl::calcResponse(const Mat alphaf_data, const Mat _alphaf_den, const Mat kf_data, Mat & response_data, Mat & spec_data, Mat & spec2_data) const {
|
||||
|
||||
mulSpectrums(_alphaf,_kf,spec,0,false);
|
||||
mulSpectrums(alphaf_data,kf_data,spec_data,0,false);
|
||||
|
||||
for(int i=0;i<_k.rows;i++){
|
||||
for(int j=0;j<_k.cols;j++){
|
||||
temp=std::complex<double>(spec.at<Vec2d>(i,j)[0],spec.at<Vec2d>(i,j)[1])/(std::complex<double>(_alphaf_den.at<Vec2d>(i,j)[0],_alphaf_den.at<Vec2d>(i,j)[1])/*+std::complex<double>(0.0000000001,0.0000000001)*/);
|
||||
spec2.at<Vec2d >(i,j)[0]=temp.real();
|
||||
spec2.at<Vec2d >(i,j)[1]=temp.imag();
|
||||
//z=(a+bi)/(c+di)=[(ac+bd)+i(bc-ad)]/(c^2+d^2)
|
||||
double den;
|
||||
for(int i=0;i<kf_data.rows;i++){
|
||||
for(int j=0;j<kf_data.cols;j++){
|
||||
den=1.0/(_alphaf_den.at<Vec2d>(i,j)[0]*_alphaf_den.at<Vec2d>(i,j)[0]+_alphaf_den.at<Vec2d>(i,j)[1]*_alphaf_den.at<Vec2d>(i,j)[1]);
|
||||
spec2_data.at<Vec2d>(i,j)[0]=
|
||||
(spec_data.at<Vec2d>(i,j)[0]*_alphaf_den.at<Vec2d>(i,j)[0]+spec_data.at<Vec2d>(i,j)[1]*_alphaf_den.at<Vec2d>(i,j)[1])*den;
|
||||
spec2_data.at<Vec2d>(i,j)[1]=
|
||||
(spec_data.at<Vec2d>(i,j)[1]*_alphaf_den.at<Vec2d>(i,j)[0]-spec_data.at<Vec2d>(i,j)[0]*_alphaf_den.at<Vec2d>(i,j)[1])*den;
|
||||
}
|
||||
}
|
||||
|
||||
ifft2(spec2,_response);
|
||||
ifft2(spec2_data,response_data);
|
||||
}
|
||||
|
||||
void TrackerKCFImpl::setFeatureExtractor(void (*f)(const Mat, const Rect, Mat&), bool pca_func){
|
||||
if(pca_func){
|
||||
extractor_pca.push_back(f);
|
||||
use_custom_extractor_pca = true;
|
||||
}else{
|
||||
extractor_npca.push_back(f);
|
||||
use_custom_extractor_npca = true;
|
||||
}
|
||||
}
|
||||
/*----------------------------------------------------------------------*/
|
||||
|
||||
@@ -669,9 +821,10 @@ namespace cv{
|
||||
output_sigma_factor=1.0/16.0;
|
||||
resize=true;
|
||||
max_patch_size=80*80;
|
||||
descriptor=CN;
|
||||
split_coeff=true;
|
||||
wrap_kernel=false;
|
||||
desc_npca = GRAY;
|
||||
desc_pca = CN;
|
||||
|
||||
//feature compression
|
||||
compress_feature=true;
|
||||
@@ -683,4 +836,6 @@ namespace cv{
|
||||
|
||||
void TrackerKCF::Params::write( cv::FileStorage& /*fs*/ ) const{}
|
||||
|
||||
void TrackerKCF::setFeatureExtractor(void (*)(const Mat, const Rect, Mat&), bool ){};
|
||||
|
||||
} /* namespace cv */
|
||||
|
Reference in New Issue
Block a user