1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-21 23:01:45 +08:00

Merge pull request #3636 from kaingwade:ml_to_contrib

Move ml to opencv_contrib #3636

Main PR: opencv/opencv#25017
This commit is contained in:
WU Jia
2024-02-27 20:54:59 +08:00
committed by GitHub
parent c5d22ddf14
commit cf63a7f71f
101 changed files with 23882 additions and 0 deletions

View File

@@ -0,0 +1,171 @@
#!/usr/bin/env python
'''
The sample demonstrates how to train Random Trees classifier
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
We use the sample database letter-recognition.data
from UCI Repository, here is the link:
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and Computer Science.
The dataset consists of 20000 feature vectors along with the
responses - capital latin letters A..Z.
The first 10000 samples are used for training
and the remaining 10000 - to test the classifier.
======================================================
Models: RTrees, KNearest, Boost, SVM, MLP
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
def load_base(fn):
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
samples, responses = a[:,1:], a[:,0]
return samples, responses
class LetterStatModel(object):
class_n = 26
train_ratio = 0.5
def load(self, fn):
self.model.load(fn)
def save(self, fn):
self.model.save(fn)
def unroll_samples(self, samples):
sample_n, var_n = samples.shape
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
return new_samples
def unroll_responses(self, responses):
sample_n = len(responses)
new_responses = np.zeros(sample_n*self.class_n, np.int32)
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
new_responses[resp_idx] = 1
return new_responses
class RTrees(LetterStatModel):
def __init__(self):
self.model = cv.ml.RTrees_create()
def train(self, samples, responses):
#sample_n, var_n = samples.shape
self.model.setMaxDepth(20)
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.ravel()
class KNearest(LetterStatModel):
def __init__(self):
self.model = cv.ml.KNearest_create()
def train(self, samples, responses):
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
def predict(self, samples):
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, k = 10)
return results.ravel()
class Boost(LetterStatModel):
def __init__(self):
self.model = cv.ml.Boost_create()
def train(self, samples, responses):
_sample_n, var_n = samples.shape
new_samples = self.unroll_samples(samples)
new_responses = self.unroll_responses(responses)
var_types = np.array([cv.ml.VAR_NUMERICAL] * var_n + [cv.ml.VAR_CATEGORICAL, cv.ml.VAR_CATEGORICAL], np.uint8)
self.model.setWeakCount(15)
self.model.setMaxDepth(10)
self.model.train(cv.ml.TrainData_create(new_samples, cv.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
def predict(self, samples):
new_samples = self.unroll_samples(samples)
_ret, resp = self.model.predict(new_samples)
return resp.ravel().reshape(-1, self.class_n).argmax(1)
class SVM(LetterStatModel):
def __init__(self):
self.model = cv.ml.SVM_create()
def train(self, samples, responses):
self.model.setType(cv.ml.SVM_C_SVC)
self.model.setC(1)
self.model.setKernel(cv.ml.SVM_RBF)
self.model.setGamma(.1)
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.ravel()
class MLP(LetterStatModel):
def __init__(self):
self.model = cv.ml.ANN_MLP_create()
def train(self, samples, responses):
_sample_n, var_n = samples.shape
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
self.model.setLayerSizes(layer_sizes)
self.model.setTrainMethod(cv.ml.ANN_MLP_BACKPROP)
self.model.setBackpropMomentumScale(0)
self.model.setBackpropWeightScale(0.001)
self.model.setTermCriteria((cv.TERM_CRITERIA_COUNT, 20, 0.01))
self.model.setActivationFunction(cv.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
self.model.train(samples, cv.ml.ROW_SAMPLE, np.float32(new_responses))
def predict(self, samples):
_ret, resp = self.model.predict(samples)
return resp.argmax(-1)
from tests_common import NewOpenCVTests
class letter_recog_test(NewOpenCVTests):
def test_letter_recog(self):
eps = 0.01
models = [RTrees, KNearest, Boost, SVM, MLP]
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
testErrors = {RTrees: (98.930000, 92.390000), KNearest: (94.960000, 92.010000),
Boost: (85.970000, 74.920000), SVM: (99.780000, 95.680000), MLP: (90.060000, 87.410000)}
for model in models:
Model = models[model]
classifier = Model()
samples, responses = load_base(self.repoPath + '/samples/data/letter-recognition.data')
train_n = int(len(samples)*classifier.train_ratio)
classifier.train(samples[:train_n], responses[:train_n])
train_rate = np.mean(classifier.predict(samples[:train_n]) == responses[:train_n].astype(int))
test_rate = np.mean(classifier.predict(samples[train_n:]) == responses[train_n:].astype(int))
self.assertLess(train_rate - testErrors[Model][0], eps)
self.assertLess(test_rate - testErrors[Model][1], eps)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()