mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-23 00:49:38 +08:00
Merge pull request #3636 from kaingwade:ml_to_contrib
Move ml to opencv_contrib #3636 Main PR: opencv/opencv#25017
This commit is contained in:
127
modules/ml/samples/logistic_regression.cpp
Normal file
127
modules/ml/samples/logistic_regression.cpp
Normal file
@@ -0,0 +1,127 @@
|
||||
// Logistic Regression sample
|
||||
// AUTHOR: Rahul Kavi rahulkavi[at]live[at]com
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/ml.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
static void showImage(const Mat &data, int columns, const String &name)
|
||||
{
|
||||
Mat bigImage;
|
||||
for(int i = 0; i < data.rows; ++i)
|
||||
{
|
||||
bigImage.push_back(data.row(i).reshape(0, columns));
|
||||
}
|
||||
imshow(name, bigImage.t());
|
||||
}
|
||||
|
||||
static float calculateAccuracyPercent(const Mat &original, const Mat &predicted)
|
||||
{
|
||||
return 100 * (float)countNonZero(original == predicted) / predicted.rows;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
const String filename = samples::findFile("data01.xml");
|
||||
cout << "**********************************************************************" << endl;
|
||||
cout << filename
|
||||
<< " contains digits 0 and 1 of 20 samples each, collected on an Android device" << endl;
|
||||
cout << "Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"
|
||||
<< endl;
|
||||
cout << "**********************************************************************" << endl;
|
||||
|
||||
Mat data, labels;
|
||||
{
|
||||
cout << "loading the dataset...";
|
||||
FileStorage f;
|
||||
if(f.open(filename, FileStorage::READ))
|
||||
{
|
||||
f["datamat"] >> data;
|
||||
f["labelsmat"] >> labels;
|
||||
f.release();
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "file can not be opened: " << filename << endl;
|
||||
return 1;
|
||||
}
|
||||
data.convertTo(data, CV_32F);
|
||||
labels.convertTo(labels, CV_32F);
|
||||
cout << "read " << data.rows << " rows of data" << endl;
|
||||
}
|
||||
|
||||
Mat data_train, data_test;
|
||||
Mat labels_train, labels_test;
|
||||
for(int i = 0; i < data.rows; i++)
|
||||
{
|
||||
if(i % 2 == 0)
|
||||
{
|
||||
data_train.push_back(data.row(i));
|
||||
labels_train.push_back(labels.row(i));
|
||||
}
|
||||
else
|
||||
{
|
||||
data_test.push_back(data.row(i));
|
||||
labels_test.push_back(labels.row(i));
|
||||
}
|
||||
}
|
||||
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
|
||||
|
||||
// display sample image
|
||||
showImage(data_train, 28, "train data");
|
||||
showImage(data_test, 28, "test data");
|
||||
|
||||
// simple case with batch gradient
|
||||
cout << "training...";
|
||||
//! [init]
|
||||
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
|
||||
lr1->setLearningRate(0.001);
|
||||
lr1->setIterations(10);
|
||||
lr1->setRegularization(LogisticRegression::REG_L2);
|
||||
lr1->setTrainMethod(LogisticRegression::BATCH);
|
||||
lr1->setMiniBatchSize(1);
|
||||
//! [init]
|
||||
lr1->train(data_train, ROW_SAMPLE, labels_train);
|
||||
cout << "done!" << endl;
|
||||
|
||||
cout << "predicting...";
|
||||
Mat responses;
|
||||
lr1->predict(data_test, responses);
|
||||
cout << "done!" << endl;
|
||||
|
||||
// show prediction report
|
||||
cout << "original vs predicted:" << endl;
|
||||
labels_test.convertTo(labels_test, CV_32S);
|
||||
cout << labels_test.t() << endl;
|
||||
cout << responses.t() << endl;
|
||||
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl;
|
||||
|
||||
// save the classifier
|
||||
const String saveFilename = "NewLR_Trained.xml";
|
||||
cout << "saving the classifier to " << saveFilename << endl;
|
||||
lr1->save(saveFilename);
|
||||
|
||||
// load the classifier onto new object
|
||||
cout << "loading a new classifier from " << saveFilename << endl;
|
||||
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
|
||||
|
||||
// predict using loaded classifier
|
||||
cout << "predicting the dataset using the loaded classifier...";
|
||||
Mat responses2;
|
||||
lr2->predict(data_test, responses2);
|
||||
cout << "done!" << endl;
|
||||
|
||||
// calculate accuracy
|
||||
cout << labels_test.t() << endl;
|
||||
cout << responses2.t() << endl;
|
||||
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl;
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user