1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-22 16:08:41 +08:00

Merge pull request #3636 from kaingwade:ml_to_contrib

Move ml to opencv_contrib #3636

Main PR: opencv/opencv#25017
This commit is contained in:
WU Jia
2024-02-27 20:54:59 +08:00
committed by GitHub
parent c5d22ddf14
commit cf63a7f71f
101 changed files with 23882 additions and 0 deletions

View File

@@ -0,0 +1,62 @@
import cv2 as cv
import numpy as np
# Set up training data
## [setup1]
labels = np.array([1, -1, -1, -1])
trainingData = np.matrix([[501, 10], [255, 10], [501, 255], [10, 501]], dtype=np.float32)
## [setup1]
# Train the SVM
## [init]
svm = cv.ml.SVM_create()
svm.setType(cv.ml.SVM_C_SVC)
svm.setKernel(cv.ml.SVM_LINEAR)
svm.setTermCriteria((cv.TERM_CRITERIA_MAX_ITER, 100, 1e-6))
## [init]
## [train]
svm.train(trainingData, cv.ml.ROW_SAMPLE, labels)
## [train]
# Data for visual representation
width = 512
height = 512
image = np.zeros((height, width, 3), dtype=np.uint8)
# Show the decision regions given by the SVM
## [show]
green = (0,255,0)
blue = (255,0,0)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
sampleMat = np.matrix([[j,i]], dtype=np.float32)
response = svm.predict(sampleMat)[1]
if response == 1:
image[i,j] = green
elif response == -1:
image[i,j] = blue
## [show]
# Show the training data
## [show_data]
thickness = -1
cv.circle(image, (501, 10), 5, ( 0, 0, 0), thickness)
cv.circle(image, (255, 10), 5, (255, 255, 255), thickness)
cv.circle(image, (501, 255), 5, (255, 255, 255), thickness)
cv.circle(image, ( 10, 501), 5, (255, 255, 255), thickness)
## [show_data]
# Show support vectors
## [show_vectors]
thickness = 2
sv = svm.getUncompressedSupportVectors()
for i in range(sv.shape[0]):
cv.circle(image, (int(sv[i,0]), int(sv[i,1])), 6, (128, 128, 128), thickness)
## [show_vectors]
cv.imwrite('result.png', image) # save the image
cv.imshow('SVM Simple Example', image) # show it to the user
cv.waitKey()

View File

@@ -0,0 +1,117 @@
from __future__ import print_function
import cv2 as cv
import numpy as np
import random as rng
NTRAINING_SAMPLES = 100 # Number of training samples per class
FRAC_LINEAR_SEP = 0.9 # Fraction of samples which compose the linear separable part
# Data for visual representation
WIDTH = 512
HEIGHT = 512
I = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)
# --------------------- 1. Set up training data randomly ---------------------------------------
trainData = np.empty((2*NTRAINING_SAMPLES, 2), dtype=np.float32)
labels = np.empty((2*NTRAINING_SAMPLES, 1), dtype=np.int32)
rng.seed(100) # Random value generation class
# Set up the linearly separable part of the training data
nLinearSamples = int(FRAC_LINEAR_SEP * NTRAINING_SAMPLES)
## [setup1]
# Generate random points for the class 1
trainClass = trainData[0:nLinearSamples,:]
# The x coordinate of the points is in [0, 0.4)
c = trainClass[:,0:1]
c[:] = np.random.uniform(0.0, 0.4 * WIDTH, c.shape)
# The y coordinate of the points is in [0, 1)
c = trainClass[:,1:2]
c[:] = np.random.uniform(0.0, HEIGHT, c.shape)
# Generate random points for the class 2
trainClass = trainData[2*NTRAINING_SAMPLES-nLinearSamples:2*NTRAINING_SAMPLES,:]
# The x coordinate of the points is in [0.6, 1]
c = trainClass[:,0:1]
c[:] = np.random.uniform(0.6*WIDTH, WIDTH, c.shape)
# The y coordinate of the points is in [0, 1)
c = trainClass[:,1:2]
c[:] = np.random.uniform(0.0, HEIGHT, c.shape)
## [setup1]
#------------------ Set up the non-linearly separable part of the training data ---------------
## [setup2]
# Generate random points for the classes 1 and 2
trainClass = trainData[nLinearSamples:2*NTRAINING_SAMPLES-nLinearSamples,:]
# The x coordinate of the points is in [0.4, 0.6)
c = trainClass[:,0:1]
c[:] = np.random.uniform(0.4*WIDTH, 0.6*WIDTH, c.shape)
# The y coordinate of the points is in [0, 1)
c = trainClass[:,1:2]
c[:] = np.random.uniform(0.0, HEIGHT, c.shape)
## [setup2]
#------------------------- Set up the labels for the classes ---------------------------------
labels[0:NTRAINING_SAMPLES,:] = 1 # Class 1
labels[NTRAINING_SAMPLES:2*NTRAINING_SAMPLES,:] = 2 # Class 2
#------------------------ 2. Set up the support vector machines parameters --------------------
print('Starting training process')
## [init]
svm = cv.ml.SVM_create()
svm.setType(cv.ml.SVM_C_SVC)
svm.setC(0.1)
svm.setKernel(cv.ml.SVM_LINEAR)
svm.setTermCriteria((cv.TERM_CRITERIA_MAX_ITER, int(1e7), 1e-6))
## [init]
#------------------------ 3. Train the svm ----------------------------------------------------
## [train]
svm.train(trainData, cv.ml.ROW_SAMPLE, labels)
## [train]
print('Finished training process')
#------------------------ 4. Show the decision regions ----------------------------------------
## [show]
green = (0,100,0)
blue = (100,0,0)
for i in range(I.shape[0]):
for j in range(I.shape[1]):
sampleMat = np.matrix([[j,i]], dtype=np.float32)
response = svm.predict(sampleMat)[1]
if response == 1:
I[i,j] = green
elif response == 2:
I[i,j] = blue
## [show]
#----------------------- 5. Show the training data --------------------------------------------
## [show_data]
thick = -1
# Class 1
for i in range(NTRAINING_SAMPLES):
px = trainData[i,0]
py = trainData[i,1]
cv.circle(I, (int(px), int(py)), 3, (0, 255, 0), thick)
# Class 2
for i in range(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES):
px = trainData[i,0]
py = trainData[i,1]
cv.circle(I, (int(px), int(py)), 3, (255, 0, 0), thick)
## [show_data]
#------------------------- 6. Show support vectors --------------------------------------------
## [show_vectors]
thick = 2
sv = svm.getUncompressedSupportVectors()
for i in range(sv.shape[0]):
cv.circle(I, (int(sv[i,0]), int(sv[i,1])), 6, (128, 128, 128), thick)
## [show_vectors]
cv.imwrite('result.png', I) # save the Image
cv.imshow('SVM for Non-Linear Training Data', I) # show it to the user
cv.waitKey()

View File

@@ -0,0 +1,73 @@
#!/usr/bin/env python
import cv2 as cv
import numpy as np
SZ=20
bin_n = 16 # Number of bins
affine_flags = cv.WARP_INVERSE_MAP|cv.INTER_LINEAR
## [deskew]
def deskew(img):
m = cv.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
return img
## [deskew]
## [hog]
def hog(img):
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
mag, ang = cv.cartToPolar(gx, gy)
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists) # hist is a 64 bit vector
return hist
## [hog]
img = cv.imread(cv.samples.findFile('digits.png'),0)
if img is None:
raise Exception("we need the digits.png image from samples/data here !")
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
# First half is trainData, remaining is testData
train_cells = [ i[:50] for i in cells ]
test_cells = [ i[50:] for i in cells]
###### Now training ########################
deskewed = [list(map(deskew,row)) for row in train_cells]
hogdata = [list(map(hog,row)) for row in deskewed]
trainData = np.float32(hogdata).reshape(-1,64)
responses = np.repeat(np.arange(10),250)[:,np.newaxis]
svm = cv.ml.SVM_create()
svm.setKernel(cv.ml.SVM_LINEAR)
svm.setType(cv.ml.SVM_C_SVC)
svm.setC(2.67)
svm.setGamma(5.383)
svm.train(trainData, cv.ml.ROW_SAMPLE, responses)
svm.save('svm_data.dat')
###### Now testing ########################
deskewed = [list(map(deskew,row)) for row in test_cells]
hogdata = [list(map(hog,row)) for row in deskewed]
testData = np.float32(hogdata).reshape(-1,bin_n*4)
result = svm.predict(testData)[1]
####### Check Accuracy ########################
mask = result==responses
correct = np.count_nonzero(mask)
print(correct*100.0/result.size)