mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 04:25:42 +08:00
Merge pull request #3636 from kaingwade:ml_to_contrib
Move ml to opencv_contrib #3636 Main PR: opencv/opencv#25017
This commit is contained in:
113
modules/ml/src/testset.cpp
Normal file
113
modules/ml/src/testset.cpp
Normal file
@@ -0,0 +1,113 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv { namespace ml {
|
||||
|
||||
struct PairDI
|
||||
{
|
||||
double d;
|
||||
int i;
|
||||
};
|
||||
|
||||
struct CmpPairDI
|
||||
{
|
||||
bool operator ()(const PairDI& e1, const PairDI& e2) const
|
||||
{
|
||||
return (e1.d < e2.d) || (e1.d == e2.d && e1.i < e2.i);
|
||||
}
|
||||
};
|
||||
|
||||
void createConcentricSpheresTestSet( int num_samples, int num_features, int num_classes,
|
||||
OutputArray _samples, OutputArray _responses)
|
||||
{
|
||||
if( num_samples < 1 )
|
||||
CV_Error( CV_StsBadArg, "num_samples parameter must be positive" );
|
||||
|
||||
if( num_features < 1 )
|
||||
CV_Error( CV_StsBadArg, "num_features parameter must be positive" );
|
||||
|
||||
if( num_classes < 1 )
|
||||
CV_Error( CV_StsBadArg, "num_classes parameter must be positive" );
|
||||
|
||||
int i, cur_class;
|
||||
|
||||
_samples.create( num_samples, num_features, CV_32F );
|
||||
_responses.create( 1, num_samples, CV_32S );
|
||||
|
||||
Mat responses = _responses.getMat();
|
||||
|
||||
Mat mean = Mat::zeros(1, num_features, CV_32F);
|
||||
Mat cov = Mat::eye(num_features, num_features, CV_32F);
|
||||
|
||||
// fill the feature values matrix with random numbers drawn from standard normal distribution
|
||||
randMVNormal( mean, cov, num_samples, _samples );
|
||||
Mat samples = _samples.getMat();
|
||||
|
||||
// calculate distances from the origin to the samples and put them
|
||||
// into the sequence along with indices
|
||||
std::vector<PairDI> dis(samples.rows);
|
||||
|
||||
for( i = 0; i < samples.rows; i++ )
|
||||
{
|
||||
PairDI& elem = dis[i];
|
||||
elem.i = i;
|
||||
elem.d = norm(samples.row(i), NORM_L2);
|
||||
}
|
||||
|
||||
std::sort(dis.begin(), dis.end(), CmpPairDI());
|
||||
|
||||
// assign class labels
|
||||
num_classes = std::min( num_samples, num_classes );
|
||||
for( i = 0, cur_class = 0; i < num_samples; ++cur_class )
|
||||
{
|
||||
int last_idx = num_samples * (cur_class + 1) / num_classes - 1;
|
||||
double max_dst = dis[last_idx].d;
|
||||
max_dst = std::max( max_dst, dis[i].d );
|
||||
|
||||
for( ; i < num_samples && dis[i].d <= max_dst; ++i )
|
||||
responses.at<int>(dis[i].i) = cur_class;
|
||||
}
|
||||
}
|
||||
|
||||
}}
|
||||
|
||||
/* End of file. */
|
Reference in New Issue
Block a user