1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-16 13:57:05 +08:00

Change of interface and multiple fixes

This commit is contained in:
Vlad Shakhuro
2015-08-03 17:14:28 +03:00
parent 3f1cce24ba
commit d06d7e2918
27 changed files with 917 additions and 2460 deletions

View File

@@ -49,204 +49,28 @@ the use of this software, even if advised of the possibility of such damage.
/** @defgroup xobjdetect Extended object detection
*/
namespace cv
{
namespace xobjdetect
{
//! @addtogroup xobjdetect
//! @{
/** @brief Compute channels for integral channel features evaluation
@param image image for which channels should be computed
@param channels output array for computed channels
*/
CV_EXPORTS void computeChannels(InputArray image, std::vector<Mat>& channels);
/** @brief Feature evaluation interface
*/
class CV_EXPORTS FeatureEvaluator : public Algorithm
{
class CV_EXPORTS WBDetector {
public:
/** @brief Set channels for feature evaluation
WBDetector(const std::string& model_filename);
@param channels array of channels to be set
*/
virtual void setChannels(InputArrayOfArrays channels) = 0;
void train(
const std::string& pos_samples,
const std::string& neg_imgs);
/** @brief Set window position to sample features with shift. By default position is (0, 0).
@param position position to be set
*/
virtual void setPosition(Size position) = 0;
/** @brief Evaluate feature value with given index for current channels and window position.
@param feature_ind index of feature to be evaluated
*/
virtual int evaluate(size_t feature_ind) const = 0;
/** @brief Evaluate all features for current channels and window position.
@param feature_values matrix-column of evaluated feature values
*/
virtual void evaluateAll(OutputArray feature_values) const = 0;
virtual void assertChannels() = 0;
};
/** @brief Construct feature evaluator.
@param features features for evaluation
@param type feature type. Can be "icf" or "acf"
*/
CV_EXPORTS Ptr<FeatureEvaluator>
createFeatureEvaluator(const std::vector<std::vector<int> >& features,
const std::string& type);
/** @brief Generate integral features. Returns vector of features.
@param window_size size of window in which features should be evaluated
@param type feature type. Can be "icf" or "acf"
@param count number of features to generate.
@param channel_count number of feature channels
*/
std::vector<std::vector<int> >
generateFeatures(Size window_size, const std::string& type,
int count = INT_MAX, int channel_count = 10);
//sort in-place of columns of the input matrix
void sort_columns_without_copy(Mat& m, Mat indices = Mat());
/** @brief Parameters for WaldBoost. weak_count — number of weak learners, alpha — cascade thresholding param.
*/
struct CV_EXPORTS WaldBoostParams
{
int weak_count;
float alpha;
WaldBoostParams(): weak_count(100), alpha(0.02f)
{}
};
/** @brief WaldBoost object detector from @cite Sochman05 .
*/
class CV_EXPORTS WaldBoost : public Algorithm
{
public:
/** @brief Train WaldBoost cascade for given data.
Returns feature indices chosen for cascade. Feature enumeration starts from 0.
@param data matrix of feature values, size M x N, one feature per row
@param labels matrix of samples class labels, size 1 x N. Labels can be from {-1, +1}
@param use_fast_log
*/
virtual std::vector<int> train(Mat& data,
const Mat& labels, bool use_fast_log=false) = 0;
/** @brief Predict objects class given object that can compute object features.
Returns unnormed confidence value — measure of confidence that object is from class +1.
@param feature_evaluator object that can compute features by demand
*/
virtual float predict(
const Ptr<FeatureEvaluator>& feature_evaluator) const = 0;
};
/** @brief Construct WaldBoost object.
*/
CV_EXPORTS Ptr<WaldBoost>
createWaldBoost(const WaldBoostParams& params = WaldBoostParams());
/** @brief Params for ICFDetector training.
*/
struct CV_EXPORTS ICFDetectorParams
{
int feature_count;
int weak_count;
int model_n_rows;
int model_n_cols;
int bg_per_image;
std::string features_type;
float alpha;
bool is_grayscale;
bool use_fast_log;
ICFDetectorParams(): feature_count(UINT_MAX), weak_count(100),
model_n_rows(56), model_n_cols(56), bg_per_image(5), alpha(0.02f), is_grayscale(false), use_fast_log(false)
{}
};
/** @brief Integral Channel Features from @cite Dollar09 .
*/
class CV_EXPORTS ICFDetector
{
public:
ICFDetector(): waldboost_(), features_(), ftype_() {}
/** @brief Train detector.
@param pos_filenames path to folder with images of objects (wildcards like /my/path/\*.png are allowed)
@param bg_filenames path to folder with background images
@param params parameters for detector training
*/
void train(const std::vector<String>& pos_filenames,
const std::vector<String>& bg_filenames,
ICFDetectorParams params = ICFDetectorParams());
/** @brief Detect objects on image.
@param image image for detection
@param objects output array of bounding boxes
@param scaleFactor scale between layers in detection pyramid
@param minSize min size of objects in pixels
@param maxSize max size of objects in pixels
@param threshold
@param slidingStep sliding window step
@param values output vector with values of positive samples
*/
void detect(const Mat& image, std::vector<Rect>& objects,
float scaleFactor, Size minSize, Size maxSize, float threshold, int slidingStep, std::vector<float>& values);
/** @brief Detect objects on image.
@param img image for detection
@param objects output array of bounding boxes
@param minScaleFactor min factor by which the image will be resized
@param maxScaleFactor max factor by which the image will be resized
@param factorStep scaling factor is incremented each pyramid layer according to this parameter
@param threshold
@param slidingStep sliding window step
@param values output vector with values of positive samples
*/
void detect(const Mat& img, std::vector<Rect>& objects, float minScaleFactor, float maxScaleFactor, float factorStep, float threshold, int slidingStep, std::vector<float>& values);
/** @brief Write detector to FileStorage.
@param fs FileStorage for output
*/
void write(FileStorage &fs) const;
/** @brief Write ICFDetector to FileNode
@param node FileNode for reading
*/
void read(const FileNode &node);
void detect(
const Mat& img,
std::vector<Rect> &bboxes,
std::vector<double> &confidences);
private:
Ptr<WaldBoost> waldboost_;
std::vector<std::vector<int> > features_;
int model_n_rows_;
int model_n_cols_;
std::string ftype_;
std::string model_filename_;
};
CV_EXPORTS void write(FileStorage& fs, String&, const ICFDetector& detector);
CV_EXPORTS void read(const FileNode& node, ICFDetector& d,
const ICFDetector& default_value = ICFDetector());
//! @}
} /* namespace xobjdetect */
} /* namespace cv */

View File

@@ -1,88 +0,0 @@
#ifndef __OPENCV_XOBJDETECT_PRIVATE_HPP__
#define __OPENCV_XOBJDETECT_PRIVATE_HPP__
#ifndef __OPENCV_BUILD
# error this is a private header, do not include it outside OpenCV
#endif
#include <opencv2/core.hpp>
namespace cv
{
namespace xobjdetect
{
class CV_EXPORTS Stump
{
public:
/* Initialize zero stump */
Stump(): threshold_(0), polarity_(1), pos_value_(1), neg_value_(-1) {}
/* Initialize stump with given threshold, polarity
and classification values */
Stump(int threshold, int polarity, float pos_value, float neg_value):
threshold_(threshold), polarity_(polarity),
pos_value_(pos_value), neg_value_(neg_value) {}
/* Train stump for given data
data — matrix of feature values, size M x N, one feature per row
labels — matrix of sample class labels, size 1 x N. Labels can be from
{-1, +1}
weights — matrix of sample weights, size 1 x N
visited_features: vector of already visited features (ignored in successive calls)
Returns chosen feature index. Feature enumeration starts from 0
*/
int train(const Mat& data, const Mat& labels, const Mat& weights, const std::vector<int>& visited_features, bool use_fast_log = false);
/* Predict object class given
value — feature value. Feature must be the same as was chosen
during training stump
Returns real value, sign(value) means class
*/
float predict(int value) const;
/* Write stump in FileStorage */
void write(FileStorage& fs) const
{
fs << "{"
<< "threshold" << threshold_
<< "polarity" << polarity_
<< "pos_value" << pos_value_
<< "neg_value" << neg_value_
<< "}";
}
/* Read stump */
void read(const FileNode& node)
{
threshold_ = (int)node["threshold"];
polarity_ = (int)node["polarity"];
pos_value_ = (float)node["pos_value"];
neg_value_ = (float)node["neg_value"];
}
private:
/* Stump decision threshold */
int threshold_;
/* Stump polarity, can be from {-1, +1} */
int polarity_;
/* Classification values for positive and negative classes */
float pos_value_, neg_value_;
};
void read(const FileNode& node, Stump& s, const Stump& default_value=Stump());
void write(FileStorage& fs, String&, const Stump& s);
} /* namespace xobjdetect */
} /* namespace cv */
#endif // __OPENCV_XOBJDETECT_PRIVATE_HPP__