mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 04:25:42 +08:00
Allows structured_light pipeline to be run from Python
SinusoidalPattern::unwrapPhaseMap now takes an InputArray instead of InputArrayOfArrays to correct a Python binding problem present a scriptable HistogramPhaseUnwrapping::create replicate C++ structured_light test in Python PhaseUnwrapping now init unwrappedPhase so pixel outside the mask area are set to 0 python binding for HistogramPhaseUnwrapping::Params to use HistogramPhaseUnwrapping::create
This commit is contained in:
@@ -75,20 +75,21 @@ public:
|
||||
* @param nbrOfSmallBins Number of bins between 0 and "histThresh". Default value is 10.
|
||||
* @param nbrOfLargeBins Number of bins between "histThresh" and 32*pi*pi (highest edge reliability value). Default value is 5.
|
||||
*/
|
||||
struct CV_EXPORTS Params
|
||||
struct CV_EXPORTS_W_SIMPLE Params
|
||||
{
|
||||
Params();
|
||||
int width;
|
||||
int height;
|
||||
float histThresh;
|
||||
int nbrOfSmallBins;
|
||||
int nbrOfLargeBins;
|
||||
CV_WRAP Params();
|
||||
CV_PROP_RW int width;
|
||||
CV_PROP_RW int height;
|
||||
CV_PROP_RW float histThresh;
|
||||
CV_PROP_RW int nbrOfSmallBins;
|
||||
CV_PROP_RW int nbrOfLargeBins;
|
||||
};
|
||||
/**
|
||||
* @brief Constructor
|
||||
|
||||
* @param parameters HistogramPhaseUnwrapping parameters HistogramPhaseUnwrapping::Params: width,height of the phase map and histogram characteristics.
|
||||
*/
|
||||
CV_WRAP
|
||||
static Ptr<HistogramPhaseUnwrapping> create( const HistogramPhaseUnwrapping::Params ¶meters =
|
||||
HistogramPhaseUnwrapping::Params() );
|
||||
|
||||
|
@@ -0,0 +1,3 @@
|
||||
#ifdef HAVE_OPENCV_PHASE_UNWRAPPING
|
||||
typedef cv::phase_unwrapping::HistogramPhaseUnwrapping::Params HistogramPhaseUnwrapping_Params;
|
||||
#endif
|
@@ -712,7 +712,10 @@ void HistogramPhaseUnwrapping_Impl::addIncrement( OutputArray unwrappedPhaseMap
|
||||
int rows = params.height;
|
||||
int cols = params.width;
|
||||
if( uPhaseMap.empty() )
|
||||
{
|
||||
uPhaseMap.create(rows, cols, CV_32FC1);
|
||||
uPhaseMap = Scalar::all(0);
|
||||
}
|
||||
int nbrOfPixels = static_cast<int>(pixels.size());
|
||||
for( int i = 0; i < nbrOfPixels; ++i )
|
||||
{
|
||||
|
@@ -119,7 +119,7 @@ public:
|
||||
* @param shadowMask Mask used to discard shadow regions.
|
||||
*/
|
||||
CV_WRAP
|
||||
virtual void unwrapPhaseMap( InputArrayOfArrays wrappedPhaseMap,
|
||||
virtual void unwrapPhaseMap( InputArray wrappedPhaseMap,
|
||||
OutputArray unwrappedPhaseMap,
|
||||
cv::Size camSize,
|
||||
InputArray shadowMask = noArray() ) = 0;
|
||||
|
@@ -0,0 +1,94 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import os, numpy
|
||||
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class structured_light_test(NewOpenCVTests):
|
||||
|
||||
def test_unwrap(self):
|
||||
paramsPsp = cv.structured_light_SinusoidalPattern_Params();
|
||||
paramsFtp = cv.structured_light_SinusoidalPattern_Params();
|
||||
paramsFaps = cv.structured_light_SinusoidalPattern_Params();
|
||||
paramsPsp.methodId = cv.structured_light.PSP;
|
||||
paramsFtp.methodId = cv.structured_light.FTP;
|
||||
paramsFaps.methodId = cv.structured_light.FAPS;
|
||||
|
||||
sinusPsp = cv.structured_light.SinusoidalPattern_create(paramsPsp)
|
||||
sinusFtp = cv.structured_light.SinusoidalPattern_create(paramsFtp)
|
||||
sinusFaps = cv.structured_light.SinusoidalPattern_create(paramsFaps)
|
||||
|
||||
captures = []
|
||||
for i in range(0,3):
|
||||
capture = self.get_sample('/cv/structured_light/data/capture_sin_%d.jpg'%i, cv.IMREAD_GRAYSCALE)
|
||||
if capture is None:
|
||||
raise unittest.SkipTest("Missing files with test data")
|
||||
captures.append(capture)
|
||||
|
||||
rows,cols = captures[0].shape
|
||||
|
||||
unwrappedPhaseMapPspRef = self.get_sample('/cv/structured_light/data/unwrappedPspTest.jpg',
|
||||
cv.IMREAD_GRAYSCALE)
|
||||
unwrappedPhaseMapFtpRef = self.get_sample('/cv/structured_light/data/unwrappedFtpTest.jpg',
|
||||
cv.IMREAD_GRAYSCALE)
|
||||
unwrappedPhaseMapFapsRef = self.get_sample('/cv/structured_light/data/unwrappedFapsTest.jpg',
|
||||
cv.IMREAD_GRAYSCALE)
|
||||
|
||||
wrappedPhaseMap,shadowMask = sinusPsp.computePhaseMap(captures);
|
||||
unwrappedPhaseMap = sinusPsp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
|
||||
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
|
||||
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)
|
||||
|
||||
sumOfDiff = 0
|
||||
count = 0
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
ref = int(unwrappedPhaseMapPspRef[i, j])
|
||||
comp = int(unwrappedPhaseMap8[i, j])
|
||||
sumOfDiff += (ref - comp)
|
||||
count += 1
|
||||
|
||||
ratio = sumOfDiff/float(count)
|
||||
self.assertLessEqual(ratio, 0.2)
|
||||
|
||||
wrappedPhaseMap,shadowMask = sinusFtp.computePhaseMap(captures);
|
||||
unwrappedPhaseMap = sinusFtp.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
|
||||
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
|
||||
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)
|
||||
|
||||
sumOfDiff = 0
|
||||
count = 0
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
ref = int(unwrappedPhaseMapFtpRef[i, j])
|
||||
comp = int(unwrappedPhaseMap8[i, j])
|
||||
sumOfDiff += (ref - comp)
|
||||
count += 1
|
||||
|
||||
ratio = sumOfDiff/float(count)
|
||||
self.assertLessEqual(ratio, 0.2)
|
||||
|
||||
wrappedPhaseMap,shadowMask2 = sinusFaps.computePhaseMap(captures);
|
||||
unwrappedPhaseMap = sinusFaps.unwrapPhaseMap(wrappedPhaseMap, (cols, rows), shadowMask=shadowMask)
|
||||
unwrappedPhaseMap8 = unwrappedPhaseMap*1 + 128
|
||||
unwrappedPhaseMap8 = numpy.uint8(unwrappedPhaseMap8)
|
||||
|
||||
sumOfDiff = 0
|
||||
count = 0
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
ref = int(unwrappedPhaseMapFapsRef[i, j])
|
||||
comp = int(unwrappedPhaseMap8[i, j])
|
||||
sumOfDiff += (ref - comp)
|
||||
count += 1
|
||||
|
||||
ratio = sumOfDiff/float(count)
|
||||
self.assertLessEqual(ratio, 0.2)
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
Reference in New Issue
Block a user