mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 02:16:34 +08:00
tracking: adding a mosse tracker
This commit is contained in:
@@ -100,3 +100,10 @@ author={Held, David and Thrun, Sebastian and Savarese, Silvio},
|
|||||||
booktitle = {European Conference Computer Vision (ECCV)},
|
booktitle = {European Conference Computer Vision (ECCV)},
|
||||||
year = {2016}
|
year = {2016}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@inproceedings{MOSSE,
|
||||||
|
title={Visual Object Tracking using Adaptive Correlation Filters},
|
||||||
|
author={Bolme, David S. and Beveridge, J. Ross and Draper, Bruce A. and Lui Yui, Man},
|
||||||
|
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||||||
|
year = {2010}
|
||||||
|
}
|
||||||
|
@@ -1297,6 +1297,22 @@ public:
|
|||||||
virtual ~TrackerGOTURN() {}
|
virtual ~TrackerGOTURN() {}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/** @brief the MOSSE tracker
|
||||||
|
note, that this tracker works with grayscale images, if passed bgr ones, they will get converted internally.
|
||||||
|
@cite MOSSE Visual Object Tracking using Adaptive Correlation Filters
|
||||||
|
*/
|
||||||
|
|
||||||
|
class CV_EXPORTS_W TrackerMOSSE : public Tracker
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
/** @brief Constructor
|
||||||
|
*/
|
||||||
|
CV_WRAP static Ptr<TrackerMOSSE> create();
|
||||||
|
|
||||||
|
virtual ~TrackerMOSSE() {}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
/************************************ MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
|
/************************************ MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
|
||||||
/** @brief This class is used to track multiple objects using the specified tracker algorithm.
|
/** @brief This class is used to track multiple objects using the specified tracker algorithm.
|
||||||
* The MultiTracker is naive implementation of multiple object tracking.
|
* The MultiTracker is naive implementation of multiple object tracking.
|
||||||
|
@@ -19,6 +19,8 @@ inline cv::Ptr<cv::Tracker> createTrackerByName(cv::String name)
|
|||||||
tracker = cv::TrackerMIL::create();
|
tracker = cv::TrackerMIL::create();
|
||||||
else if (name == "GOTURN")
|
else if (name == "GOTURN")
|
||||||
tracker = cv::TrackerGOTURN::create();
|
tracker = cv::TrackerGOTURN::create();
|
||||||
|
else if (name == "MOSSE")
|
||||||
|
tracker = cv::TrackerMOSSE::create();
|
||||||
else
|
else
|
||||||
CV_Error(cv::Error::StsBadArg, "Invalid tracking algorithm name\n");
|
CV_Error(cv::Error::StsBadArg, "Invalid tracking algorithm name\n");
|
||||||
|
|
||||||
|
@@ -22,7 +22,7 @@ static void help()
|
|||||||
"Example of <video_name> is in opencv_extra/testdata/cv/tracking/\n"
|
"Example of <video_name> is in opencv_extra/testdata/cv/tracking/\n"
|
||||||
"Call:\n"
|
"Call:\n"
|
||||||
"./tracker <tracker_algorithm> <video_name> <start_frame> [<bounding_frame>]\n"
|
"./tracker <tracker_algorithm> <video_name> <start_frame> [<bounding_frame>]\n"
|
||||||
"tracker_algorithm can be: MIL, BOOSTING, MEDIANFLOW, TLD\n"
|
"tracker_algorithm can be: MIL, BOOSTING, MEDIANFLOW, TLD, KCF, GOTURN, MOSSE.\n"
|
||||||
<< endl;
|
<< endl;
|
||||||
|
|
||||||
cout << "\n\nHot keys: \n"
|
cout << "\n\nHot keys: \n"
|
||||||
|
249
modules/tracking/src/mosseTracker.cpp
Normal file
249
modules/tracking/src/mosseTracker.cpp
Normal file
@@ -0,0 +1,249 @@
|
|||||||
|
// This file is part of the OpenCV project.
|
||||||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||||
|
// of this distribution and at http://opencv.org/license.html.
|
||||||
|
|
||||||
|
//
|
||||||
|
//[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters"
|
||||||
|
// http://www.cs.colostate.edu/~draper/papers/bolme_cvpr10.pdf
|
||||||
|
//
|
||||||
|
|
||||||
|
//
|
||||||
|
// credits:
|
||||||
|
// Kun-Hsin Chen: for initial c++ code
|
||||||
|
// Cracki: for the idea of only converting the used patch to gray
|
||||||
|
//
|
||||||
|
|
||||||
|
#include "opencv2/tracking.hpp"
|
||||||
|
|
||||||
|
namespace cv {
|
||||||
|
namespace tracking {
|
||||||
|
|
||||||
|
struct DummyModel : TrackerModel
|
||||||
|
{
|
||||||
|
virtual void modelUpdateImpl(){}
|
||||||
|
virtual void modelEstimationImpl( const std::vector<Mat>& ){}
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
const double eps=0.00001; // for normalization
|
||||||
|
const double rate=0.2; // learning rate
|
||||||
|
const double psrThreshold=5.7; // no detection, if PSR is smaller than this
|
||||||
|
|
||||||
|
|
||||||
|
struct MosseImpl : TrackerMOSSE
|
||||||
|
{
|
||||||
|
protected:
|
||||||
|
|
||||||
|
Point2d center; //center of the bounding box
|
||||||
|
Size size; //size of the bounding box
|
||||||
|
Mat hanWin;
|
||||||
|
Mat G; //goal
|
||||||
|
Mat H, A, B; //state
|
||||||
|
|
||||||
|
// Element-wise division of complex numbers in src1 and src2
|
||||||
|
Mat divDFTs( const Mat &src1, const Mat &src2 ) const
|
||||||
|
{
|
||||||
|
Mat c1[2],c2[2],a1,a2,s1,s2,denom,re,im;
|
||||||
|
|
||||||
|
// split into re and im per src
|
||||||
|
cv::split(src1, c1);
|
||||||
|
cv::split(src2, c2);
|
||||||
|
|
||||||
|
// (Re2*Re2 + Im2*Im2) = denom
|
||||||
|
// denom is same for both channels
|
||||||
|
cv::multiply(c2[0], c2[0], s1);
|
||||||
|
cv::multiply(c2[1], c2[1], s2);
|
||||||
|
cv::add(s1, s2, denom);
|
||||||
|
|
||||||
|
// (Re1*Re2 + Im1*Im1)/(Re2*Re2 + Im2*Im2) = Re
|
||||||
|
cv::multiply(c1[0], c2[0], a1);
|
||||||
|
cv::multiply(c1[1], c2[1], a2);
|
||||||
|
cv::divide(a1+a2, denom, re, 1.0 );
|
||||||
|
|
||||||
|
// (Im1*Re2 - Re1*Im2)/(Re2*Re2 + Im2*Im2) = Im
|
||||||
|
cv::multiply(c1[1], c2[0], a1);
|
||||||
|
cv::multiply(c1[0], c2[1], a2);
|
||||||
|
cv::divide(a1+a2, denom, im, -1.0);
|
||||||
|
|
||||||
|
// Merge Re and Im back into a complex matrix
|
||||||
|
Mat dst, chn[] = {re,im};
|
||||||
|
cv::merge(chn, 2, dst);
|
||||||
|
return dst;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void preProcess( Mat &window ) const
|
||||||
|
{
|
||||||
|
window.convertTo(window, CV_32F);
|
||||||
|
log(window + 1.0f, window);
|
||||||
|
|
||||||
|
//normalize
|
||||||
|
Scalar mean,StdDev;
|
||||||
|
meanStdDev(window, mean, StdDev);
|
||||||
|
window = (window-mean[0]) / (StdDev[0]+eps);
|
||||||
|
|
||||||
|
//Gaussain weighting
|
||||||
|
window = window.mul(hanWin);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
double correlate( const Mat &image_sub, Point &delta_xy ) const
|
||||||
|
{
|
||||||
|
Mat IMAGE_SUB, RESPONSE, response;
|
||||||
|
// filter in dft space
|
||||||
|
dft(image_sub, IMAGE_SUB, DFT_COMPLEX_OUTPUT);
|
||||||
|
mulSpectrums(IMAGE_SUB, H, RESPONSE, 0, true );
|
||||||
|
idft(RESPONSE, response, DFT_SCALE|DFT_REAL_OUTPUT);
|
||||||
|
// update center position
|
||||||
|
double maxVal; Point maxLoc;
|
||||||
|
minMaxLoc(response, 0, &maxVal, 0, &maxLoc);
|
||||||
|
delta_xy.x = maxLoc.x - int(response.size().width/2);
|
||||||
|
delta_xy.y = maxLoc.y - int(response.size().height/2);
|
||||||
|
// normalize response
|
||||||
|
Scalar mean,std;
|
||||||
|
meanStdDev(response, mean, std);
|
||||||
|
return (maxVal-mean[0]) / (std[0]+eps); // PSR
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Mat randWarp( const Mat& a ) const
|
||||||
|
{
|
||||||
|
cv::RNG rng(8031965);
|
||||||
|
|
||||||
|
// random rotation
|
||||||
|
double C=0.1;
|
||||||
|
double ang = rng.uniform(-C,C);
|
||||||
|
double c=cos(ang), s=sin(ang);
|
||||||
|
// affine warp matrix
|
||||||
|
Mat_<float> W(2,3);
|
||||||
|
W << c + rng.uniform(-C,C), -s + rng.uniform(-C,C), 0,
|
||||||
|
s + rng.uniform(-C,C), c + rng.uniform(-C,C), 0;
|
||||||
|
|
||||||
|
// random translation
|
||||||
|
Mat_<float> center_warp(2, 1);
|
||||||
|
center_warp << a.cols/2, a.rows/2;
|
||||||
|
W.col(2) = center_warp - (W.colRange(0, 2))*center_warp;
|
||||||
|
|
||||||
|
Mat warped;
|
||||||
|
warpAffine(a, warped, W, a.size(), BORDER_REFLECT);
|
||||||
|
return warped;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
virtual bool initImpl( const Mat& image, const Rect2d& boundingBox )
|
||||||
|
{
|
||||||
|
model = makePtr<DummyModel>();
|
||||||
|
|
||||||
|
Mat img;
|
||||||
|
if (image.channels() == 1)
|
||||||
|
img = image;
|
||||||
|
else
|
||||||
|
cvtColor(image, img, COLOR_BGR2GRAY);
|
||||||
|
|
||||||
|
int w = getOptimalDFTSize(int(boundingBox.width));
|
||||||
|
int h = getOptimalDFTSize(int(boundingBox.height));
|
||||||
|
|
||||||
|
//Get the center position
|
||||||
|
int x1 = int(floor((2*boundingBox.x+boundingBox.width-w)/2));
|
||||||
|
int y1 = int(floor((2*boundingBox.y+boundingBox.height-h)/2));
|
||||||
|
center.x = x1 + (w)/2;
|
||||||
|
center.y = y1 + (h)/2;
|
||||||
|
size.width = w;
|
||||||
|
size.height = h;
|
||||||
|
|
||||||
|
Mat window;
|
||||||
|
getRectSubPix(img, size, center, window);
|
||||||
|
createHanningWindow(hanWin, size, CV_32F);
|
||||||
|
|
||||||
|
// goal
|
||||||
|
Mat g=Mat::zeros(size,CV_32F);
|
||||||
|
g.at<float>(h/2, w/2) = 1;
|
||||||
|
GaussianBlur(g, g, Size(-1,-1), 2.0);
|
||||||
|
double maxVal;
|
||||||
|
minMaxLoc(g, 0, &maxVal);
|
||||||
|
g = g / maxVal;
|
||||||
|
dft(g, G, DFT_COMPLEX_OUTPUT);
|
||||||
|
|
||||||
|
// initial A,B and H
|
||||||
|
A = Mat::zeros(G.size(), G.type());
|
||||||
|
B = Mat::zeros(G.size(), G.type());
|
||||||
|
for(int i=0; i<8; i++)
|
||||||
|
{
|
||||||
|
Mat window_warp = randWarp(window);
|
||||||
|
preProcess(window_warp);
|
||||||
|
|
||||||
|
Mat WINDOW_WARP, A_i, B_i;
|
||||||
|
dft(window_warp, WINDOW_WARP, DFT_COMPLEX_OUTPUT);
|
||||||
|
mulSpectrums(G , WINDOW_WARP, A_i, 0, true);
|
||||||
|
mulSpectrums(WINDOW_WARP, WINDOW_WARP, B_i, 0, true);
|
||||||
|
A+=A_i;
|
||||||
|
B+=B_i;
|
||||||
|
}
|
||||||
|
H = divDFTs(A,B);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual bool updateImpl( const Mat& image, Rect2d& boundingBox )
|
||||||
|
{
|
||||||
|
if (H.empty()) // not initialized
|
||||||
|
return false;
|
||||||
|
|
||||||
|
Mat image_sub;
|
||||||
|
getRectSubPix(image, size, center, image_sub);
|
||||||
|
|
||||||
|
if (image_sub.channels() != 1)
|
||||||
|
cvtColor(image_sub, image_sub, COLOR_BGR2GRAY);
|
||||||
|
preProcess(image_sub);
|
||||||
|
|
||||||
|
Point delta_xy;
|
||||||
|
double PSR = correlate(image_sub, delta_xy);
|
||||||
|
if (PSR < psrThreshold)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
//update location
|
||||||
|
center.x += delta_xy.x;
|
||||||
|
center.y += delta_xy.y;
|
||||||
|
|
||||||
|
Mat img_sub_new;
|
||||||
|
getRectSubPix(image, size, center, img_sub_new);
|
||||||
|
if (img_sub_new.channels() != 1)
|
||||||
|
cvtColor(img_sub_new, img_sub_new, COLOR_BGR2GRAY);
|
||||||
|
preProcess(img_sub_new);
|
||||||
|
|
||||||
|
// new state for A and B
|
||||||
|
Mat F, A_new, B_new;
|
||||||
|
dft(img_sub_new, F, DFT_COMPLEX_OUTPUT);
|
||||||
|
mulSpectrums(G, F, A_new, 0, true );
|
||||||
|
mulSpectrums(F, F, B_new, 0, true );
|
||||||
|
|
||||||
|
// update A ,B, and H
|
||||||
|
A = A*(1-rate) + A_new*rate;
|
||||||
|
B = B*(1-rate) + B_new*rate;
|
||||||
|
H = divDFTs(A, B);
|
||||||
|
|
||||||
|
// return tracked rect
|
||||||
|
double x=center.x, y=center.y;
|
||||||
|
int w = size.width, h=size.height;
|
||||||
|
boundingBox = Rect2d(Point2d(x-0.5*w, y-0.5*h), Point2d(x+0.5*w, y+0.5*h));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
public:
|
||||||
|
MosseImpl() { isInit = 0; }
|
||||||
|
|
||||||
|
// dummy implementation.
|
||||||
|
virtual void read( const FileNode& ){}
|
||||||
|
virtual void write( FileStorage& ) const{}
|
||||||
|
|
||||||
|
}; // MosseImpl
|
||||||
|
|
||||||
|
} // tracking
|
||||||
|
|
||||||
|
|
||||||
|
Ptr<TrackerMOSSE> TrackerMOSSE::create()
|
||||||
|
{
|
||||||
|
return makePtr<tracking::MosseImpl>();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
} // cv
|
@@ -464,6 +464,13 @@ TEST_P(DistanceAndOverlap, DISABLED_TLD)
|
|||||||
TrackerTest test( TrackerTLD::create(), dataset, 60, .4f, NoTransform);
|
TrackerTest test( TrackerTLD::create(), dataset, 60, .4f, NoTransform);
|
||||||
test.run();
|
test.run();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_P(DistanceAndOverlap, MOSSE)
|
||||||
|
{
|
||||||
|
TrackerTest test( TrackerMOSSE::create(), dataset, 22, .7f, NoTransform);
|
||||||
|
test.run();
|
||||||
|
}
|
||||||
|
|
||||||
/***************************************************************************************/
|
/***************************************************************************************/
|
||||||
//Tests with shifted initial window
|
//Tests with shifted initial window
|
||||||
TEST_P(DistanceAndOverlap, Shifted_Data_MedianFlow)
|
TEST_P(DistanceAndOverlap, Shifted_Data_MedianFlow)
|
||||||
@@ -495,6 +502,12 @@ TEST_P(DistanceAndOverlap, DISABLED_Shifted_Data_TLD)
|
|||||||
TrackerTest test( TrackerTLD::create(), dataset, 120, .2f, CenterShiftLeft);
|
TrackerTest test( TrackerTLD::create(), dataset, 120, .2f, CenterShiftLeft);
|
||||||
test.run();
|
test.run();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_P(DistanceAndOverlap, Shifted_Data_MOSSE)
|
||||||
|
{
|
||||||
|
TrackerTest test( TrackerMOSSE::create(), dataset, 13, .69f, CenterShiftLeft);
|
||||||
|
test.run();
|
||||||
|
}
|
||||||
/***************************************************************************************/
|
/***************************************************************************************/
|
||||||
//Tests with scaled initial window
|
//Tests with scaled initial window
|
||||||
TEST_P(DistanceAndOverlap, Scaled_Data_MedianFlow)
|
TEST_P(DistanceAndOverlap, Scaled_Data_MedianFlow)
|
||||||
@@ -534,6 +547,13 @@ TEST_P(DistanceAndOverlap, DISABLED_GOTURN)
|
|||||||
test.run();
|
test.run();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_P(DistanceAndOverlap, Scaled_Data_MOSSE)
|
||||||
|
{
|
||||||
|
TrackerTest test( TrackerMOSSE::create(), dataset, 22, 0.69f, Scale_1_1, 1);
|
||||||
|
test.run();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
INSTANTIATE_TEST_CASE_P( Tracking, DistanceAndOverlap, TESTSET_NAMES);
|
INSTANTIATE_TEST_CASE_P( Tracking, DistanceAndOverlap, TESTSET_NAMES);
|
||||||
|
|
||||||
/* End of file. */
|
/* End of file. */
|
||||||
|
Reference in New Issue
Block a user